EJ Technologies

The definitive guide to JProfiler

All you need to know as a performance professional

© 2024 ej-technologies GmbH. All rights reserved.

Index

INEFOAUCTION ettt ettt sttt sttt b st st b e st et e b et et et e st e st e st eseeae s st sbesbesbesbesbesbesbesbansansens 4
ATCIITECEUIE ettt b bbbt bt et e b et et et e st e a e st e bt e bt e bt e bt e b e sbesbesbesbesbesbenbeneen 5
INISEAIIINE 1evveiteieietetee ettt ettt ettt e e e e s e e s e e be s s e sb e st e sbesb e st et e e b et et et e s sentenneneeraeneeneeraereerens 7
PrOTIING @ JVIML ettt bbbttt et et e st st s bt s atebesbesaesbesbesbesbes 11
RECOIAING LA .ttt bbbttt et ettt e bt et aeebesbesbesbesbeebes 26
SNAPSNOLS ettt ettt e e b e e b bt s bbb et e b et et e st et e e enteneeseeseereeres 39
TEIEIMELIIES vttt ettt sttt b e s bbb b et et et et et et e st e st eaeebeebesbesbesbesbesbe st antenee 44
CPU PrOfIlING ettt sttt ettt et et e st e bt e bt ebesbesbesbesbesbesbens 52
MEthOd Call FECOITING .viveieiiieieieieereees ettt a et e e e s e esassaesassessessesbessesbessessesses 65
MEMONY PrOTHING wooueeeieeieiieieeee ettt sttt st st b e st ettt et et et et et e st esesnesaeas 70
THE NEAP WAIKET .ttt sttt ettt ettt et et b e s b s b et e sbesbesbeseneen 80
THrEad PrOfiliNG cooeiiiiicicrere ettt e e e e e e e e esessessessesbesbesbesbesantan 97
PPODES .ttt b e bbb bbb et et et et et et et et e aeeaeebesaeeas 104
G ANAIYSIS ettt ettt b bbb bbbt bbbttt ettt et e et be b b eae 118
IMBEAN DIOWSET ...ttt ettt ettt ettt st b et b bbbttt b bbb bt e s be e e 124
OFfliNG PrOfIlING weeveeeieeeieete ettt sttt s b e ettt e e et et e st eaeene 128
COMPArNG SNAPSNOTSuiiiieieeeeeeee ettt ettt be bbb b s b sbesbeneeeens 133
IDE INTEZIATIONS .uveeueieiieniteiieesite st et e sttt eb e st e s bt et e st e s bt e beesabe e bt e sabesabeessaesaseesbaesnsesaseesneesnsesnseennes 140
A CUSTOM PrODES ..ottt sttt ettt et et ebe s bt be s b e sbe s b st esbesbesbeaansen 148

AT PrODE CONCEPLS .ottt sttt ettt ettt et s be bt ebe b sbe b e 148

A2 SCHIPE PIODES .ottt b et b ettt e et e et et e et ebe s e 155

A3 INJECLEA PrODES .ottt ettt et e et st st e s s e be s bt e sbesabesbesssenbessbesbasanens 159

YN S0 g o =To Lo [=To I o o] o 1= PRSP RRR PR SRTRRO 164
B Call tree features in detail ..ottt sttt et et 168

B.1 Auto-tuning for iINSTruMENTAtioNccccciiiiieireeee e 168

B.2 Async and remote requeSt traCkingcocoeeeeirereniniereresee ettt e 171

B.3 Viewing parts 0f the Call TrEE ...cuviiiiircecere e sre bbb 177

B.4 SPHTHING The Call T8O w.evviiireeireeeeereresere ettt sb e st sb e st b e st se s nes 182

B.5 Call £rEE @NQAIYSES ...evuiriiriiriiriritreseses ettt ettt ettt sb s bbb sh et be b ntebens 186
C Advanced CPU aNAlYSIS VIEWSccuiieieieieieteeeeeieete sttt sttt sttt se et e et et et sbesbesne 191

(G IO TV T <Y o [<] (Tt oY o SRR 191

C.2 COMPIEXITY @NAIYSIS tvirviriiriirieriirierieierteteesese sttt sre st s ae s e sse s eaesessessessessessessessessessens 195

C.3 QI TrACERT ittt b e bbbt sttt b et b et be s b et s bt b b e b e b e s b et sbe e ene 197
C.d JAVASCEIPT XHR oottt ettt ettt sttt s b bt e b e s b et eshe e b e sbeetesse e besneensessean 199
D Heap walker features in detailoccoeieeririreneeseee ettt 202
D.1T HPROF SNAPSNOLS ...eoiiiiiiiiiirierteriecte st etesie st sttt st ste b sreesaesbe e s e svaesbesaaessesssensessnensessnan 202
D.2 MIiNIMIZING OVEINEAAcciviiriiriiriisiirieietetetete ettt st s st sb et e e eaesaesaeseesessassesns 204
D.3 Filters and iV INTErACLIONSecvevierieieieieirtresesese sttt sttt st sestessessessesaesassassassessessens 206
D.4 FINAINE MEMOIY 1€AKS ..eoveriiriiriiiiiesieteiete ettt st sttt ettt s 209
E JDK Flight RECOIAEr (JFR) .eveeueriieiiriirierienietetetete ettt ettt ettt 216
E.T JFR OVEIVIBW ...ttt ettt ettt e e ee e e e e eettee e e eeabaee e e ssnsbaeee e e sbbaseesensbaeeesensssaeessnsssaeesesnsrenes 216
E.2 Recording JFR SNAPSNOLS ...ccviiiiiiiiririnesesesese st ste st stessessessesseseessessesesssesessessessessessessens 218
E.3 JFR BVENT DIOWSEL ..cviiveiceeeciecctee ettt ettt et ettt cveeebeestaesbeeebeesaveerbeesanesaneenseesanesaseennes 222
EL JFR VIBWS ettt ettt ettt ettt e sttt e st e e s ta e e e be e esatae e stbaeeentae e ssaeasseeessseesnsseesnbeeesnsaeesnseeaes 229
F Configuration iN detailecueeuireeeee ettt ettt 236
F.1 Trouble shooting connection ProblemS ... se e saeens 236
FL2 SCEIPTS ettt sttt ettt st st s e st s b e satesabe e s beesatesabeesaeesabesbeesaaesabeenseesasesnres 238
F.3 CUSEOM NEIP 1ottt st sttt bbbt sb et et et e s enaenaenesnasnnssens 242
F.4 Profiling SETtiNgS @t STAITUP ..oeeiiieieieeriereeese ettt sttt ettt ettt s sbe b b 243
G ComMANd iN@ FEEIENCE ..ottt st a e s se e 246
G.1 Executables fOr Profiling ... n e sresse e 246
G.2 Executables for SNAPSNOLS ..ottt s e sa e e e e esassesrens 249
G.3 Gradle tASKS et b 258

R 1o = 1] TSR 262

Introduction To JProfiler

What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can use
it in development, for quality assurance and for firefighting missions when your production
system experiences problems.

There are four main topics that JProfiler deals with:

* Method calls

This is commonly called "CPU profiling". Method calls can be measured and visualized in
different ways. The analysis of method calls helps you to understand what your application
is doing and find ways to improve its performance.

* Allocations

Analyzing objects on the heap with respect to their allocations, reference chains and garbage
collection falls into the category of "memory profiling". This functionality enables you to fix
memory leaks, use less memory in general and allocate fewer temporary objects.

* Threads and locks

Threads can hold locks, for example, by synchronizing on an object. When multiple threads
cooperate, deadlocks can occur and JProfiler can visualize them for you. Also, locks can be
contended, meaning that threads have to wait before they can acquire them. JProfiler provides
insight into threads and their various locking situations.

+ Higher level subsystems

Many performance problems occur on a higher semantic level. For example, with JDBC calls,
you probably want to find out which SQL statement is the slowest. For subsystems like that,
JProfiler offers "probes" that attach specific payloads to the call tree.

JProfiler's Ul is delivered as a desktop application. You can interactively profile a live JVM or profile
automatically without using the Ul. Profiling data is persisted in snapshots that can be opened
with the JProfiler Ul. In addition, command line tools and build tool integrations help you with
automating profiling sessions.

How do | continue?

This documentation is intended to be read in sequence, with later help topics building on the
content of previous ones.

First, a technical overview over the architecture [p. 5] will help you to understand how profiling
works.

The help topics on installing JProfiler [p. 7] and profiling JVMs [p. 11] will get you up and running.

Following that, the discussion of data recording [p. 26] and snapshots [p. 39] take you to a level
of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler. The
sections at the end are optional readings that should be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain area
or if you find inaccuracies in the documentation, please don't hesitate to contact us at
support@ej-technologies.com.

mailto:support@ej-technologies.com

JProfiler Architecture

The big picture of all important interactions involving the profiled application, the JProfiler Ul
and all command line utilities is given below.

jpexport
jpcompare

jpanalyze JProfiler UI

[jpcontroller }

> Snapshots

Lremoteorlocal e
local transmits | connects via connects
data socket via JMX
e N
P N loadsvia
jpenable attach JProfiler publishes | |JProfiler
agent MBean
A
p ., takes HPROF
. heap dump
— ———
jpdump Profiled JVM
|\ J
loads with controls with
-agentpath offline profiling
Command line arguments
|\ J
—» loads the profiling agent (D command line tool
——3 controls recording D process component
——» profiling data [] data

The profiling agent

The "JVM tool interface" (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least part

of the profiling agent must be implemented as native code and so a JVM profiler is not
platform-independent. JProfiler supports a range of platforms that are listed on the web site .

A JVM profiler is implemented as a native library that is loaded either at startup or at some point
later on. To load it at startup, a VM parameter - agent pat h: <path to native library>is
added to the command line. You rarely have to add this parameter manually, because JProfiler
will add it for you, for example, in an IDE integration, an integration wizard or if it launches the
JVM directly. However, it's important to know that this is what enables profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to give
the profiling agent a chance to initialize itself. JProfiler will then print a couple of diagnostic
messages prefixed with JPr of i | er > so you know that profiling is active. The bottom line is that
if you pass the - agent pat h VM parameter, the profiling agent is either loaded successfully or
the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such as thread
creation or class loading. Some of these events directly deliver profiling data. Using the class
loading event, the profiling agent instruments classes as they are loaded and inserts its own
bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler Ul, or with
the bi n/j penabl e command line tool. In that case, a substantial number of already loaded
classes may have to be retransformed in order to apply the required instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler Ul is started separately and
connects to the profiling agent through a socket. For secure connections to remote servers, you
can configure JProfiler to automatically create SSH tunnels.

From the JProfiler Ul, you can instruct the agent to record data, display the profiling data in the
Ul and save snapshots to disk. As an alternative to the Ul, the profiling agent can be controlled

through its MBean “. A command line tool that uses this MBean is bi n/ j pcontrol | er.

Yet another way to control the profiling agent is with a predefined set of triggers and actions. In
that way, the profiling agent can operate in unattended mode. This is called "offline profiling" in
JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler Ul can show live profiling data, it is often necessary to save snapshots of all
recorded profiling data. Snapshots are either saved manually in the JProfiler Ul or automatically
by trigger actions.

Snapshots can be opened and compared in the JProfiler Ul. For automated processing, the
command line tools bi n/ j pexport andbi n/ j pconpar e can be used to extract data and create
HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bi n/ j pdunp
command line tool. It uses the built-in functionality of the JVM to save an HPROF snapshot that
can be opened by JProfiler and does not require the profiling agent to be loaded.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
) https://en.wikipedia.org/wiki/Java_Management_Extensions

6

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler

Executable installers are provided for Windows and Linux/Unix that lead you step-by step through
the installation. If a previous installation is detected, the installation is streamlined.

© Setup - JProfiler - m} X

Welcome to the JProfiler Setup Wizard

This will install JProfiler on your computer,

A previous installation has been detected, Do you wish to update that
installation?

@ fes, update the existing instaliatiord @

(O No, install into a different directory

Click Next to continue, or Cancel to exit Setup.

On macOSs, JProfiler uses the standard installation procedure for Ul applications: a DMG archive
that you can mount in the Finder by double-clicking on it, then you can drag the JProfiler
application bundle to the / Appl i cat i ons folder. That folder is visible as a symbolic link in the
DMG itself.

[NN] — JPrafiler

JProfiler

On Linux/Unix, installers are not executable after download, so you have to prepend sh when
executing them. The installer performs a command line installation if you pass the parameter
- ¢. Completely unattended installations for Windows and Linux/Unix are performed with the
parameter - g. In that case, you can pass the additional argument-di r <di rect ory>inorder
to choose the installation directory.

@ S @ ingo@ubuntu: ~/Downloads

ingo@ubuntu:~/DownloadsS sh jprofiler_linux_18 _©_2.sh -c
Starting Installer ...

This will install JProfiler on your computer.

0K [o, Enter], Cancel [c]

A previous installation has been detected. Do you wish to update that installati

s, update the existing installation [1, Enter]
, install into a different directory [2]

After you run an installer, it will save a file . i nstal | 4j / response. varfi | e that contains the
entire user input. You can take that file and use it to automate unattended installations by passing
the argument-varfile <path to response.varfil e>onthe command line.

To set licensing information for unattended installations, pass - Vj profiler.|icenseKey=
<license key> -Vjprofiler.licenseName=<user nane> and optionally -Vj profiler.
| i censeConpany=<conpany nane>ascommand line arguments. If you have a floating license,
use FLOAT: <server name or | P address>instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The command

tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute bi n/
j profiler inthe extracted directory. On Linux/Unix, the filej profi | er. deskt op can be used
to integrate the JProfiler executable into your window manager. For example, on Ubuntu you
can drag the desktop file into the launcher side bar in order to create a permanent launcher
item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop Ul together with the command line utilities that operate on
snapshots, on the one hand, and the profiling agent together with the command line utilities
that control the profiled JVM, on the other hand. The installers and archives that you download
from the website contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the remote
side. While you can simply extract an archive with the JProfiler distribution on the remote machine,
you may want to limit the number of required files, especially when automating a deployment.
Also, the profiling agent is freely redistributable, so you can ship it with your application or install
it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards shows you
the download link for the appropriate agent archive as well as the download page with the agent
archives for all supported platforms. In the JProfiler GUI, invoke Session->Integration Wizards->New
Server/Remote Integration, select the "Remote" option and then proceed to the Remote installation
directory step.

@ Integration Wizard - [Generic application] on Remote Linux X86/AMDG4 >

1. Choose wizard Specify the remote installation directory
2. Local or remote
3. Profiled JVM The profiling agent must be available on the remote Linux X86/AMD&4

4, Startup mode machine.

5. Remote address
6. Remote installation directory
7. Choose profiling port

Please specify the JProfiler installation directory on the remote machine, for
example "/opt/jprofiler14".

8. Perform modifications
9. Finished

Remote installation directory: | fopt/jprofilerld

If JProfiler is not installed, you can download the profiling agent and extract it
on the remote machine in the above directory.

Direct Download Copy URL To Clipboard

A web page with agent downloads for all suppoerted platforms is also available.

Download Overview Copy URL To Clipboard

4 Back Mext P Finis Cancel

The URL for the HTML overview page for a particular JProfiler version is
https://ww. ej -t echnol ogi es. con’ downl oad/ j profil er/agent ?versi on=14. 0. 3
The format of the download URLs for the single agent archives is
htt ps: // downl oad. ej -t echnol ogi es. conijprofiler/jprofiler_agent <platforn>_14 0 3. <extensi on>

where pl at f or mcorresponds to the agent directory name in the bi n directory and ext ensi on
is zi p on Windows, . t gz on macOS and . t ar. gz for Linux/Unix. For Linux, x86 and x64 are
grouped together, so for Linux x64 the URL is

htt ps: // downl oad. ej -t echnol ogi es. confj profiler/jprofiler_agent_linux-x86_14 0 3.tar.gz

The agent archive contains the required native agent libraries together with the j penabl e,
j pdunp andj pcont r ol | er executables. The executables in the archive only require Java 6 as a
minimum version, while the profiling agent works with Java 5 or higher.

The sub-directories that you see after extracting the agent archive on the remote machine are
described below. They are a subset of a full JProfiler installation on the respective target platform.

top-level directory after extraction

Jinstall4j -----meemmeemmeeneeee > runtime for launchers
— bin --reremeeemeee s > agent JAR file and helper executables
': <platform-64> ------- > native libraries for 64-bit JVMs
<platform-32> -------1 > native libraries for 32-bit JVMs
el |0 ity > support libraries for attach functionality

Supported platforms

Because JProfiler utilizes the native profiling interface of the JVM (JVMT]), its profiling agent is a
native library.

JProfiler supports profiling on the following platforms:

oS Architecture | Supported JVMs | Versions
Windows 11/10/8/7 x86 Hotspot (OpenJDK) | 1.5- 21
Windows Server x64/AMD64 IBM/Open)9 1.5-21
2022/2019/2016/2012
macOS 10.12- 14 Intel, Apple Hotspot (Open)DK) | 1.8 - 21
IBM/Open)9 1.8-21
Linux x86 Hotspot (Open)DK) | 1.5-21
x64/AMD64 IBM/Open)9 1.5-21
Linux PPC64LE Hotspot (Open)DK) | 1.5- 21
IBM/Open)9 1.5-21
Linux ARMv7 Hotspot (Open)JDK) | 1.8 - 21
ARMv8
FreeBSD 13 AMD64 FreeBSD 1.8-21
AIX7.2-7.3 PPC64 IBM/Open)9 1.8-21

The JProfiler GUI frontend needs a Java 11 or a Java 17 VM to run. A Java 17 JRE is bundled with
JProfiler for that purpose on Windows and macOS. The attach command line tools jpenable,
jdump and jpcontroller only require a Java 6 VM.

10

Profiling A JVM

To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen in two
different ways: By specifying an - agent pat h VM parameter in the start script or by using the
attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile and is
used by the integration wizards, the IDE plugins, and session configurations that launch a JVM
from within JProfiler. Attaching works both locally as well as remotely over SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
- agent pat his a generic VM parameter provided by the JVM for loading any kind of native library
that uses the JVMTI interface. Because the profiling interface JVMTI is a native interface, the
profiling agent must be a native library. This means that you can only profile on the explicitly

supported platforms . 32-bit and 64-bit JVMs also need different native libraries. Java agents,
on the other hand, are loaded with the - j avaagent VM parameter and only have access to a
limited set of capabilities.

After - agent pat h: , the full path name to the native library is appended. There is an equivalent
parameter - agent | i b: where you only specify the platform-specific library name, but then you
have to make sure that the library is contained in the library path. After the path to the library,
you can add an equals sign and pass options to the agent, separated by commas. For example,
on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofilerl4/bin/linux-x64/1ibjprofilerti.so=port=8849, nowai t

The first equals sign separates the path name from the parameters, the second equals sign is
part of the parameter port =8849. This common parameter defines the port on which the
profiling agent is listening to connections from the JProfiler GUI. 8849 is actually the default port,
so you can also omit that parameter. If you want to profile multiple JVMs on the same machine,
you have to assign different ports, though. The IDE plugins and the locally launched sessions
assign this port automatically, for integration wizards you have to choose the port explicitly.

The second parameter nowai t tells the profiling agent not to block the JVM at startup and wait
for a JProfiler GUI to connect. Blocking at startup is the default because the profiling agent does
not receive its profiling settings as command line parameters but from the JProfiler GUI or
alternatively from a config file. The command line parameters are only for bootstrapping the
profiling agent, telling it how to get started and for passing debug flags.

Under some circumstances, setting the profiling settings at startup [p. 243] is required and some
manual work may be required to achieve this.

By default, the JProfiler agent binds the communication socket to the loopback interface. You
can add the option addr ess=[| P addr ess] in order to select a specific interface or addr ess=
0. 0. 0.0 to bind the communication socket to all available network interfaces. This can be
necessary if you want to publish the profiling port from a docker container.

Locally launched sessions

Like "Run configurations" in an IDE, you can configure locally launched sessions directly in JProfiler.
You specify the class path, the main class, working directory, VM parameters and arguments,
and JProfiler launches the session for you. All the demo sessions that ship with JProfiler are locally
launched sessions.

M https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

11

https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html
https://www.ej-technologies.com/products/jprofiler/featuresPlatforms.html

@ Session Settings

X

Application Settings Session name: | Animated Bezier Curve Demo Id: 101 0
Session Type
Profiled JVM . Attach to an already running HotSpot/Open)3 JVM and profile it
Code Editor Attach A e Select from all local JVMs Attach to remote JVM Kubernete
E= Call Tree Recording i Launch a new JVM and profile it
Launch Launch type: Application Web Start
' Call Tree Filters
Application Settings
Trigger Settings Java VM: 17 [Ch\Users\ingohjdksjbrsdk-17-b1351] Configure JREs
Working directory: [startup directery]
Databases VM options: @
Main class or executable JAR: | bezierBezierAnim
HTTP, RPC & JEE
Program arguments: block (7]
JVM & Custom Probes Open browser with URL
Java File Path
Advanced Settings
derno\bezier\classes o
o Class path i
Source path @
Library path (7]
General Settings Copy Settings From “ Cancel

A special launch mode is "Web Start" where you select the URL of the JNLP file, and JProfiler will

launch a JVM to profile it. This feature supports OpenWebStart'”, legacy WebStart from pre-Java
9 Oracle JREs is not supported.

@ Session Settings X
g

Session name: | Web Start Session Id: 162 0

Application Settings

Session Type
Profiled VM ‘ Attach to an already running HotSpot/Open)3 JVM and profile it
Code Editor Attach | Attachtype: () Select from all local lMs () Attach to remote JVM () Kubernete
E= Call Tree Remrding i Launch a new JVM and profile it
et Launch type: Application
' Call Tree Filters
Web Start Settings
| Trigger Settings URL of the JNLP file: | http://www.jgoedies.com/downlead/jdiskreport2/jdiskreport.jnlp
WebStart sessions require that OpenWebStart is installed.
; Databases lava File Path
Mote: the classpath is used for the bytecode viewer only.
HTTP, RPC & JEE
@ +
° JVM & Custom Probes © Class path
Source path 0
o
@' Advanced Settings
General Settings Copy Settings From “ Cancel

) https://openwebstart.com/

12

https://openwebstart.com/

Locally launched sessions can be converted to standalone sessions with the conversion wizards
by invoking Session->Conversion Wizards from the main menu. Convert Application Session to Remote
simply creates a start script and inserts the - agent pat h VM parameter into the Java call. Convert
Application Session to Offline creates a start script for offline profiling [p. 128] which means that
the config is loaded on startup and the JProfiler GUI is not required. Convert Application Session
to Redistributed Session does the same thing, but creates a directory j profil er _redi st next
to it that contains the profiling agent as well as the config file so you can ship it to a different
machine where JProfiler is not installed.

w\f\ew Profiling Window Help JProfiler - a X

3 & Start Center Ctrl+0 9

starl | New Window Ctrl+Alt+0

Centt I Compare Snapshots in New Window

| 77 New Session Ctrl+M
& Quick Attach Crl+Alt+A
. Integration Wizards »
Convert Application Session to Remote

i Open Session Convert Application Session to Offline

Export Session Settings

Convert Application Session to Redistributed Session

Impert Session Settings

Open Snapshot & Start 3 profiling session or open a snapshot to view data

Recent Snapshots »
y :
1 R -
General Settings Ctrl+F12
= IDE Integrations
g 7 Close Window Chrl+W
Exit JProfiler Ctrl+Alt+X

VM & Custom Probes

@ Detached

If you develop the profiled application yourself, consider using an IDE integration [p. 140] instead
of a launched session. It will be more convenient and give you better source code navigation. If
you do not develop the application yourself, but already have a start script, consider using the
remote integration wizard. It will tell you the exact VM parameter that you have to add to the
Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start scripts
or config files that can be modified programmatically to include additional VM parameters. For
some products, start scripts can be generated where VM parameters are passed as arguments
or via environment variables.

13

@ Integration Wizard

1. Choose wizard
2. Local or remote
3. Profiled JVM

4, Startup mode

Choose integration wizard

This wizard integrates your application server or remote application with
JProfiler. Choose the appropriate wizard from the list below.

If your application server is not listed, choose "[Generic application server]” to
get step by step instructions for manual integration

B [Generic application server]
ug [Generic application]

] installdj/exed) project
@jsvc service

E ColdFusion

H Glassfish

E JBoss

H ety

E Jonas

E Metbeans RCP application

A Resin

MNext p Finis Cancel

In all cases, you have to locate some specific file from the third-party product, so JProfiler has
the necessary context to perform its modifications. Some generic wizards only give you
instructions on what you have to do in order to enable profiling.

€ Integration Wizard - Tomcat

1. Choose wizard

2. Local or remote

3. Profiled JVM

4, Startup mode

5. Locate start script
6. Choose profiling port
7. Check medifications
8. Finished

Locate start script

Please locate the start script for Tomcat below.
c\Users\Bob\appserversitomcatibin\startup.bat

Mote: the usual name of the start script is:

startup.bat

The chosen startup script will not be modified. A new startup script for profiling
will be generated in the same directory.

4 Back Next b Finis Cancel

The first step in each integration wizard is the choice whether to profile on the local machine or
on a remote machine. In the case of the local machine you have to provide less information,
because JProfiler already knows the platform, where JProfiler is installed and where its config

file is located.

14

@ Integration Wizard =

1. Choose wizard Where is the profiled application located?

2. Local or remote
3. Profiled JVM The profiled application can either run on this computer or on a remote
4, Startup mode computer. If the "remote computer” option is selected, JProfiler must be
installed on that computer.
The profiled application is located:
© On this computer

On a remote computer

4 Back Mext P Finis Cancel

An important decision is the "startup mode" that was discussed above. By default, the profiling
settings are transmitted from the JProfiler Ul at startup, but you can also tell the profiling agent

to let the JVM start immediately. In the latter case, the profiling settings can be applied once the
JProfiler GUI connects.

€ Integration Wizard e
1. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3. Profiled JVM Please choose whether you would like your profiled VM to wait for a

4. Startup mode connection from the JProfiler GUI frontend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application,

IQ Startup immediately, connect later with the JProfiler GUII

[Easy] Profiling settings are transmitted directly by the JProfiler GUl ence
you connect.

Profile offline, JProfiler GUI cannot connect

[Advanced] You have te configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Finis Cancel

However, you can also specify a config file with the profiling settings, which is much more efficient.
This is done on the Config synchronization step. The main problem in this case is that you have
to synchronize the config file with the remote side each time you edit the profiling settings locally.
The most elegant way is to connect to the remote machine via SSH on the Remote address step,
then the config file can be transferred automatically via SSH.

15

@ Integration Wizard - [Generic application server] on Remote Linux X86/AMDG4 *

1. Choose wizard

2. Local or remote

3. Profiled JVM

4, Startup mode

5. Remote address

6. Remote installation directory
1. Config synchronization

8. Choose profiling port

9. Perform modifications

10. Finished

Choose how to synchronize profiling settings

The profiling agent can receive its profiling settings when the cennection is made from
the JProfiler GUI.

However, class retransformations can take a lot of time. For fast connections, you can
specify the configuration at startup.

Apply configuration when cennecting with the JProfiler GUI
© Apply configuration at startup
Directory for config file on remote computer: | /heme/build/config

Manual synchronization @
Io Copy with 55H to remote dlrectoryl (7]

Copy config file to directory: (7]

Execute command: 0

4 Back Next P Finish Cancel

At the end of the integration wizard, a session will be created that starts profiling and - in the
non-generic cases - also starts the third party product, such as an application server.

@ Integration Wizard - [Generic application server] on Remote Linux X86/AMD64 >

1. Choose wizard

2. Local or remote

3. Profiled JVM

4, Startup mode

5. Remote address

b. Remote installation directory
7. Config synchronization

8. Choose profiling port

9. Perform modifications

10. Finished

Integration is completed

The integration of your profiled VM has been completed successfully.
To profile, you have to manually start your profiled JVM first.

When you click on Finish, the remote session can be started immediately.

Io Yes, start the sessien and wait for the profiled JVM.I

Mo, | will start the session later
Edit Session And Synchrenize Config

The created session has been named

Application server on demo

Finish

External start scripts are handled by the Execute start script and Execute stop script options on the
Application settings tab of the session configuration dialog and URLs can be shown by selecting
the Open browser with URL check box. This is also the place where you can change the address
of the remote machine and the config synchronization options.

16

€@ Session Settings X
] Application Settings Session name: Application server on demo 1d: 162 @

Session Type

Profiled VM

‘ Attach to an already running HotSpot/Openl9 JVM and profile it
Code Editor Attach | Aftach type: Select from all local IVMs (€) Attach to remote JVM Kubernetes
. Ee) Launch a new JVM and profile it
M Call Tree Recordin T
E‘ d o
Launch .
“ Call Tree Filters
Profiled JVM Settings
. . If you have not yet prepared a VM for profiling, it is recommended to run an integration wizard, It will
Trigger Settings create the remote session for you.
; Datobases S5H tunnel v | | Direct 55H to demo:8849 it | @
Use SOCKS proxy
@ HTTP, RPC & JEE [Execute start command| | c\Users\bob\appserver\startServer.bat - | @
[Execute stop command| | c\Users\bob\appserver\stopServer.bat - | @
@ JVM & Custemn Probes
[Open browser with URL | | http://localhost:8080 (7]
Connection timeout: B0 | ¥ | seconds Config Synchronization Options

{‘é} Advanced Settings

Java File Path

MNote: the dasspath is used for the bytecode viewer only.

© Class path
Source path @

General Settings Copy Settings From “ Cancel

The integration wizards all handle cases where the profiled JVM is running on a remote machine.
However, when a config file or start script has to be modified, you have to copy it to your local
machine and transfer modified versions back to the remote machine. It may be more convenient
to directly run the command line tool j pi nt egr at e on the remote machine and let it perform
its modifications in place. j pi nt egr at e requires a full installation of JProfiler and has the same
JRE requirements as the JProfiler GUI.

=

ingo@ubuntu: ~

ingo@ubuntu:~$ jprofileri1e/bin/jpintegrate
Welcome to the JProfiler console integration wizard!

How do you want to find your integration wizard?

search by keyword [1, Enter], List all wizards [2]

al

Please enter a number of keywords separated by spaces (for example: Tomcat 5)

one of the following integration wizards:
Websphere 9.x Application Server [1]
Websphere 8.x Application Server [2]
Websphere 7.0 Application Server [3]
Websphere 6.1 Application Server [4]
WebSphere Community Edition 2.x [5]

When an error occurs while starting a remote profiling session, see the trouble-shooting
guide [p. 236] for a checklist of steps that you can take to fix the problem.

17

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you usually
start your application from your IDE during development, the IDE already has all the required
information and the JProfiler plugin can simply add the VM parameter for profiling, start JProfiler
if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the i nt egr at i ons directory in the JProfiler installation. In
principle, the archives in that directory can be installed manually with the plugin installation
mechanisms in the respective IDEs. However, the preferred way to install IDE integrations is to
invoke Session->IDE integrations from the main menu.

@ General Settings X
Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intelli) IDEA v

Integrate Q

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such a
session could not be started from the JProfiler GUI. Profiling settings are persisted on a per-project
or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes it easy
to jump back to the associated window in the IDE. All the Show Source actions now show the
source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 140].

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With the
attach functionality in JProfiler, you can select a running JVM and load the profiling agent on the
fly. While attach mode is convenient, it has a couple of drawbacks that you should be aware of:

* You have to identify the JVM that you want to profile from a list of running JVMs. This can
sometimes be tricky if a lot of JVMs are running on the same machine.

+ There is additional overhead because potentially many classes have to be redefined to add
instrumentation.

+ Some features in JProfiler are not available in attach mode. This is mostly because some
capabilities of the [VMTI can only be switched on when the JVM is being initialized and are not
available in later phases of the JVM's lifecycle.

+ Some features require instrumentation in a large fraction of all classes. Instrumenting while
a class is being loaded is cheap, adding instrumentation later on when the class has already
been loaded is not. Such features are disabled by default when you use attach mode.

18

« Attach functionality is supported for Open]DK JVMs, Oracle JVMs with version 6 or higher,
recent OpenJ9 JVMs (8u281+, 11.0.11+ or Java 17+) or IBM JVMs that are based on such a
release. The VM parameters - XX: +Per f Di sabl eSharedMem and - XX
+Di sabl eAtt achMechani sm must not be specified for the JVM.

The Quick Attach tab in JProfiler's start center lists all [VMs that can be profiled. The background
color of the list entries indicates whether a profiling agent has already been loaded, whether a
JProfiler GUI is currently connected or if offline profiling has been configured.

When you start a profiling session, you can configure profiling settings in the session settings
dialog. When you repeatedly profile the same process, you do not want to re-enter the same
configuration again and again, so a persistent session can be saved when you close a session
that has been created with the quick attach feature. The next time you want to profile this process,
start the saved session from the Open Session tab instead of the Quick Attach tab. You will still
have to select a running JVM, but the profiling settings are the same ones that you have already
configured before.

@ Session Settings *
i Application Settings Session name: | Local Attach Session Id: 162 @

Session Type
Profiled JVM

q Attach to an already running HotSpot/Open)3 JVM and profile it
Code Editor Attach Attach type: |) Select from all local JVMs| Attach to remote VM Kuberne
" F) Launch a new JVM and profile it
@ Call Tree Recordin, g
EJ ? &
Launch
1’ Call Tree Filters
Local Attach
Trigger Settings When you start this session, a list of locally started JVMs is shown.

Mote that it is more efficient to run an integration wizard. [t will medify the start script se that the
; Databases profiling agent is loaded at startup.

Java File Path
I HTTP, RPC & JEE
Mote: the classpath is used for the bytecode viewer only.

@ JVM & Custom Probes +
© Class path
;.:)} Advanced Settings Source path @)
General Settings Copy Settings From “ Cancel

Attaching to local services

The attach APl in the JVM requires that the invoking process runs as the same user as the process
that you want to attach to, so the list of JVMs that are displayed by JProfiler is limited to the
current user. Processes launched by different users are mostly services. The way to attach to
services differs for Windows, Linux and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running services.
JProfiler launches bridge executables to be able to attach to those processes no matter what
user they are running with.

19

@ IProfiler Start Center X

Start Center

o On this computer On another computer On a Kubernetes cluster

Open Container: | [l Mone, showing top level processes Select Container

Session
Status: All detected HotSpot/Open)9 IWMs
‘ PID Process Mame

Quick 17804 ChUsershingo\AppData'\Local\letBrains\ Toolbox\apps\IDEA-U'ch-01232.8660.185\jbr
Attach 18228 org.jetbrains,jps.cndline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
21712 org.jetbrains.kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath ChUsers\ingo\AppD...
O 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Mew 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath C\Users\inge\AppD...
Session 27736 C:h\Users\ingo\AppData\Local\JetBrains\ Toolbox\ binjre
23888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Start Heap Dump On Start JFR. Close

On Linux, JProfiler supports switching the user directly in the Ul through PolicyKit that is part of
most Linux distributions. By clicking Switch user in the attach dialog, you can enter a different
user name and authenticate with the system password dialog.

Start Center

© On this computer On another computer On a Kubernetes cluster
Open leer: aa Current user Switch User I
Session
Container: E]II Mone, showing top level processes Select Container
‘ Status: All detected HotSpot/Open9 WMs ~
E;:c: PID Process Mame
17804 ChUsershingo\AppDatatLocal\JetBrains\ Toolbox\apps\IDEA-UNch-00232.8660.185\br
o= 18228 org.jetbrains jps.cmdline.Launcher C:/Users/inge/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
2172 org.jetbrains. kotlin.daemon.KetlinCompileDaemen --daemen-runFilesPath C\Users\inge\AppD...
N 22236 org.gradle.wrapper.GradleWrapperMain --daemen screenshotsLightEn
Ses::n 25664 org.jetbrains.idea.maven.server.RemoteMavenServer36

On Unix-based platforms including macOS, you can execute the command line tool j penabl e
as a different user with su or sudo, depending on your Unix variant or Linux distribution. On
macOS and Debian-based Linux distributions like Ubuntu, sudo is used.

With sudo, call
sudo -u userNane j penabl e

with su, the required command line is
su user Name -c j penabl e

j penabl e will let you select JVMs and tell you the port on which the profiling agent is listening.
After that you can either connect with a local session from the JProfiler Ul or an SSH connection
that directly connects the port given by jpenable.

20

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your local
machine and the profiled JVM on another machine. For a setup where you pass the -agentpath
VM parameter to the profiled JVM, you have to install JProfiler on the remote machine and set
up a remote session on your local machine. With the remote attach functionality in JProfiler, no
such modifications are required. You just need SSH credentials to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in the
"Installing JProfiler" [p. 7] help topic and execute the contained command line tools on the
remote machine. You don't need SSH to be set up on your local machine, JProfiler ships with its
own implementation. In the most straightforward setup you just define host, user name and
authentication.

With an SSH connection, JProfiler can perform an automatic discovery of running JVMs or connect
to a specific port on which a profiling agent is already listening. For the latter case, you can use
j penabl e orj pi nt egr at e on the remote machine as described above and prepare a special
JVM for profiling. Then, the SSH remote attach can be configured to directly connect to the
configured profiling port.

@ Edit 55H Tunnel X

1. Tunnel mode Configure the SSH host

2. Configure S5H host

3. 55H options IProfiler will tunnel its cennection to the profiling agent through the 55H connection
configured below.

User name: build

Host: demo

S5H port: 22 Default
Authentication: Password

O Private Key | C:\Users\ingo'.sshiid_rsa

Discover running JVMs and attach to selected process (7]
I() Manually specify profiling port I (7]

Profiling port: | 31775 Default

4 Back Next P Finish Cancel

Automatic discovery will list all JVMs on the remote machine that have been started as the SSH
login user. In most cases, this will not be the user that has started the service that you would
like to profile. Because users that start services usually are not allowed for SSH connections,
JProfiler adds a Switch User hyperlink that lets you use sudo or su to switch to that user.

21

@ Attach To Running JVM X

Remote user: s root (via sudo)
Remote container: | [l Mone, showing top level processes Select Container
Status: Not profiled -
FID Process Name
1069 installdj.com.ejt.demo.server.PerfinoDemoServerStarter_demo_service start
1105 installdj.com.perfino.server.ServerMain_perfino_service start
262337 install4).com.perfino.server.ServerMain_perfino_service start
264426 standalone_demo_service
1416084 install4j.com.gjt.license.Service start

2495295 Jusr/share/jetty/start jar jetty state=/var/lib/jettyd/jetty.state jetty-started xml

Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Open Cancel

In complex network topologies, you sometimes cannot connect directly to the remote machine.
In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the GUI. At the end
of the SSH tunnel you can make one direct network connection, usually to "127.0.0.1".

© Edit 55H Tunnel X
1. Tunnel mode Configure the SSH tunnel
2. Configure S5H tunnel
3. 55H options S5H tunnel steps:
S5H to gateway.mycorp.com:22 [private key C:\Users\ingo\.ssh\id_rsa] &
55H to demo:22 [private key C:\Users\ingo\.ssh\id_rsa] x
User name: build
Host: dermo
S5H port: 22 Default
Authentication: Password

© Private Key ~ C:\Users\ingch.sshiid_rsa

After exiting frem the 55H tunnel, connect te: | 127.0.0.1

1O Discover running JVMs and attach to selected process)

Manually specify prefiling port (7]

4 Back Next b Finish Cancel

HPROF snapshots can only be taken for JVMs that were started with the SSH login user. This is
because HPROF snapshots require an intermediate file that is written with the access rights of
the user that has started the JVM. For security reasons, it is not possible to transfer file rights to
the SSH login user for download. No such restriction exists for full profiling sessions.

Attaching to JVMs running in Docker containers

Docker containers usually do not have SSH servers installed, and while you can use jpenable in

a Docker container, the profiling port will not be accessible from the outside unless you have
specified it in your Docker file.

In JProfiler, you can attach to a JVM running in a local Docker Desktop installation in Windows or
macOS by selecting the Docker container in the quick attach dialog. By default, JProfiler detects
the path to the docker executable automatically. Alternatively, you can configure it on the
"External tools" tab of the general settings dialog.

22

@ IProfiler Start Center X

Start Center

o On this computer On another computer On a Kubernetes cluster
|
Open I:Dntainer: [l Mone, showing top level processes Select Container I
Session
Status: All detected HotSpot/Open)9 IWMs Show Services
‘ PID Process Mame
Quick 17804 ChUsershingo\AppData'\Local\letBrains\ Toolbox\apps\IDEA-U'ch-01232.8660.185\jbr
Attach 18228 org.jetbrains,jps.cndline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
21712 org.jetbrains.kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath ChUsers\ingo\AppD...
[® il 22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Mew 26084 org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath C\Users\inge\AppD...
Session 27736 C:h\Users\ingo\AppData\Local\JetBrains\ Toolbox\ binjre
23888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Start Heap Dump On Start JFR. Close

After you select the container, all JVMs that run inside the Docker container will be shown. When
you select a JVM, JProfiler will use Docker commands to automatically install the profiling agent
in the selected container, prepare the JVM for profiling and tunnel the profiling protocol to the
outside.

For remote Docker installations, you can use the SSH remote attach functionality and then select
a Docker container on the remote machine. If the login user is not in the docker group, you can
first switch the user as described above.

@ Attach To Running JVM X
Remote user: e root (via sudo)
Remote container: | [l Mene, showing top level processes
Status: Not profiled -

FID Process Name
1069 install4j.com.ejt.demo.server.PerfinoDemoServerStarter_demo_service start
1103 installdj.com.perfino.server.ServerMain_perfino_service start
262337 install4j.com.perfino.server.ServerMain_perfino_service start
264426 standalone_demo_service
1416084 installdj.com.gjt.license.Service start

2405295 fust/sharefjettydfstart ar jetty.state= fvar/lib/jettyd/jetty.state jetty-started xml

Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running
Heap Dump Only Start JFR Open Cancel

With the Select container hyperlink in the remote attach dialog you can choose a running Docker
container and show all JVMs that are running in it.

Attaching to JVMs running on Kubernetes clusters

To profile a JVM that is running on a Kubernetes cluster, JProfiler uses the kubect| command
line tool, both for discovering pods and containers, as well as to connect to a container, list its
JVMs and finally to connect to a selected JVM.

The kubect| command line tool may be available on your local computer or alternatively on a
remote machine to which you have SSH access. JProfiler directly supports both scenarios. For

23

local installations, JProfiler will try to detect the path to kubect| automatically, but you can
configure an explicit path on the "External tools" tab of the general settings dialog.

@ IProfiler Start Center ®

Start Center

On this computer On another computer) On a Kubernetes cluster

Open Where is kubectl located?
Session O kubectl is on this computer
‘ kubectl is on ancther computer

Quick
Attach
O

New

Session

Open
Snapshots

JProfiler lists all detected containers in a tree with three levels. At the top are namespace nodes
that contain child nodes with the detected pods. The leaf nodes are the containers themselves
and one of them has to be chosen to proceed to the selection of a running JVM .

@ Select Remote Container X
Opticns for kubectl: | MNone Change

Remember across restarts O

default [name
openjdk-app [pod]
Eﬁl openjdk-app

Filter:

0K Cancel

kubect | may require additional command line options for authentication in order to be able
to connect to the Kubernetes cluster. These options can be entered at the top of the container
selection dialog. Because these options may be sensitive information, they are only saved to disk
if you explicitly select the checkbox to remember them across restarts. Deselecting this checkbox
will clear any previously saved information immediately.

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled JVM
together with its arguments. For launchers generated by exe4j or install4j, the executable name
is displayed.

24

If you wish to set the displayed name yourself, for example, because you have several processes
with the same main class that would otherwise be undistinguishable, you can set the VM
parameter- Oj profi | er. di spl ayNanme=[narre] . If the name contains spaces, use single quotes:
-Dj profiler.displayNane=' My nane with spaces' and quote the entire VM parameter
with double quotes if necessary. In addition to - Oj profil er. di spl ayNanme JProfiler also
recognizes - Dvi sual vm di spl ay. nane.

25

Recording Data

The main purpose of a profiler is to record runtime data from various sources that is useful for
solving common problems. The principal problem with this task is that a running JVM generates
such data at an enormous rate. If the profiler always recorded all types of data, it would create
an unacceptable overhead or quickly use up all available memory. Also, you often want to record
data around a particular use case and not see any unrelated activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of information
that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example, the
number of active threads or the number of open JDBC connections. JProfiler can sample such
values with a fixed macroscopic frequency - usually once per second - and show you the evolution
over time. In JProfiler, views that show such data are called telemetries [p. 44]. Most telemetries
are always recorded because the overhead of the measurement and the memory consumption
are small. If data is recorded for a long time, older data points are consolidated so that memory
consumption does not grow linearly with time.

|
&
’ Telemetries 0:10 0:20 0:30 0:40 0:f
50
Overview 4 } I I
Memeory } I I
Recorded Objects 2 \ | |
Recorded Throughput
GC Activity 10]
Classes
Threads R 0:17.1 [Jun 21, 2023 3:23:37 PM]
20] B Runnable threads: 1
CPU Lozd 4 mm Blocked threads: 1
12 : 3 Threads in Net [/0: 2
10 = Waiting threads: 10
‘i:l' Live Memory] e W Total number of threads: 14
1 ‘L .

.
ﬁ Heap Walker

== Runnable threads: 0 =@ Blocked threads: 0 =3 Threadsin Met [/0: 9 =3 '»
m PRI

There are also parametrized telemetries, such as the number of instances for each class. The
extra dimension makes a permanent chronological recording unsustainable. You can tell JProfiler
to record telemetries of the instance counts of a number of selected classes, but not of each
and every class.

26

” Telernetries Objects: All objects

Show: @ jeva.awt.geom.GeneralPath v
Live M R EEEREEE EERRE AR SRS EEEEEEEE AR R EERE R R
i':'l B 4 1:00 170 1:20 1:30 1:40
All Objects 5000
Recorded Objects] /
Allocation Call Tree 4,000
Allocation Hot Spots]
Class Tracker 3,000]
" 4
'ﬁ Heap Walker B
2000 7 1102 [Jun 21, 2023 5:22:16 PM] T
] ™) = Class java.aut.geom.GeneralPath: 1,812
CPU Views 4
1,000 1—N i ‘
-] \/ | |
Threads] I }
- | [
Q [T S s B Class java.awt.geom.GeneralPath: 4,43% /@ /Q)"'l

To continue the previous example, JProfiler is able to show you the instance counts of all classes,
but without the chronological information. This is the "All objects" view, and it shows each class
as a row in a table. The frequency for updating the view is lower than once per second and may
be adjusted automatically depending on how much overhead the measurement causes.
Determining the instance counts of all classes is relatively expensive and takes longer the more
objects are on the heap. JProfiler limits the update frequency of the "All objects" view so that the
overhead of the measurement never exceeds 10% over time in extreme cases. You can freeze
the views to temporarily stop recording. Also, if the view is not active, data will not be recorded
and there is no associated overhead.

' Telernetries Aggregation level: | @ Classes -
Mame Instance Count Size

. jeva.awt.Rectangle I, 50,265 (10 %) 1,608 kB
;’:’. Ee Mehon jova.util HashMapSNode I 37,549 (7 %) 1,201 kB
java.security. AccessControlContext | IN NN 33479 (6 %) 1,339 kB
All Objects sun javaZd.pipe.Region I 3918 (4 %) 956 kB
Jjava.awt.geom.AffineTransform I 20,020 (4 %) 1,506 kB
EecorlediDbjec charl] I 1752 (3 %) 1,062 kB
Allocation Call Tree float(] I 15,145 3 %) 1,225 kB
sun javald.d3d.D3DSurfaceDataSD... NN 15,622 (3 %) 312 kB
Allocation Hot Spots int]] I 12,243 (2 %) 30,237 kB
java.lang.String I 3,143 (2 %) 315 kB
Class Tracker sun java2d.SunGraphics2D I 12,937 (2 %) 2,794 kB
Jjava.lang.Integer I 12,570 (2 %) 201 kB
.'ﬁ Heap Walker Jjava.lang.ref.WeakReference I 12153 (2 %) 388 kB
sun java2d.StateTrackableDelegate... [11,745 (2 %) 187 kB
java.lang.Object(] I 0592 (2 %) 412 kB
I CPU Views sun.awt.EventQueueltem I 2777 (%) 210 kB
Jjeva.awt.EventQueues3 I G215 (1 %) 197 kB
— Jjava.util Arraylist I 7964 (1 %) 191 kB
Threads java.util. HashMap I 7525 (1 %) 380 kB
[imim b b L R A € Vit o T 7ET 01 00 210 LD
Total from 1,067 rows: 479,597 (100 %) 50,151 kB

r? Monitors & Locks | @

Some measurements capture enum-like values, such as the execution status a thread is currently
in. This kind of measurement can be displayed as a colored time line and consumes a lot less
memory than numerical telemetries. In the cases of thread statuses, the "Thread history" view
shows the timelines for all threads in the JVM. Just like for the telemetries with numeric values,
older values are consolidated and made more coarse-grained to reduce memory consumption.

27

” Telemetries

’!:!' Live Memaory
]
"ﬁ Heap Walker

I CPU Views

Threads

Thread History
Thread Monitor
Thread Dumps

n
1

; Databases

Monitors & Locks

Allocation recording

If you are interested in instance counts that have been allocated during a certain time interval,
JProfiler has to track all allocations. Contrary to the "All objects" view where JProfiler can iterate
over all objects in the heap to get information on demand, tracking single allocations requires
that additional code has to be executed for each object allocation. That makes it a very expensive
measurement that can significantly change the runtime characteristics of the profiled application,
such as the performance hot spots, especially if you allocate many objects. This is why allocation

Both alive and dead - Sort by start time b hd

Threads

Timer-0 [main]
AWT-EventQueue-0 [main]
Image Fetcher 0 [rmain]

Jjprofiler_ius [main]

0:10 0:20 0:30
|

SwingWaorker-pool-3-thread-1[main]

main [main]

Image Fetcher 0 [main]

Timer-1 [main]

Thread-9 [main]

Compiler Processing Task [main]
Compiler Processing Task [main]

Image Fetcher 0 [main]

SO TS—

== Runnable = Waiting ™= Blocked ™ Netl/O /@ /Q)"'l

recording has to be started and stopped explicitly.

Views that have an associated recording initially show an empty page with a recording button.

The same recording button is also found in the toolbar.

' Telemetries
’i:!' Live Memaory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

L
"ﬁ Heap Walker

I CPU Views

Threads
r? Monitors & Locks

Allocation recording not only records the number of allocated instances, it also records the
allocation stack traces. Keeping stack traces for each allocated recording in memory would create
excessive overhead, so JProfiler cumulates recorded stack traces into a tree. This also has the
advantage that you can interpret the data much more easily. However, the chronological aspect

Press -l'é‘ to record 1/10 allocations [Change rate

is lost and there is no way to extract certain time ranges from the data.

28

’ Telemetries
’!:!' Live Memaory

All Objects
Recorded Objects

Allocation Call Tree

Recorded allocations: Live objects at 00:09, 1/10 allocations, java.lang.String Change

Aggregation level: (@ Methods v

69.0% - 12,408 bytes - 517 alloc. java.util.concurrent. ThreadP oolExecutor§Worker.run
7| 24.6% - 4,416 bytes - 184 alloc, called from call site #3 (remote VM #1)
g7 mm 24.6% - 4,416 bytes - 134 alloc. com.gjt.demo.server.handlers.RmiHandlerlmpl.remoteOp:
Gghmm 34.6% - 4416 bytes - 184 alloc. com.ejt.demo.server.handlers.RmiHandlerimpl.perforn
4 mm 24.6% - 4,416 bytes - 184 alloc. com.ejt.demo.server.handlers.RmiHandlerlmpl.mal
(D) ™ 24.6% - 4,416 bytes - 184 alloc. com.ejt.demo server.handlers.HandlerHelper.m
(. 24.6% - 4,416 bytes - 184 alloc, com.ejt.demo.server.handlers.HandlerHelpe

= 19.4% - 3,480 bytes - 143 allec. java.net. HttpURLConnection.getRespons:

Allocation Hot Spots D128%- 504 bytes - 21 alloc. java.net.URL.<init>
W 12%-216 bytes - 9 alloc. java.net.URL.openConnection
Class Tracker W 0ax- 14 bytes - 6 alloc. java.io.BufferedReader.readLine

D 04%-72 bytes - 3 alloc. java.lang.StringBuilder toString
Dm124%-2232 bytes - 93 alloc. com.gjt.dema . server.handlers.DemoHttpServerS1.handle
@l 12.0% - 2,160 bytes - 90 alloc. com.gjt.mock.serviet. MockServlet.service
@7 10.1% - 1,824 bytes - 76 alloc. HTTP: /exchangeRate
_i 13.1% - 532 bytes - 23 allec. called from call site #4 (remote VM #1)
(@13.1% - 552 bytes - 23 alloc. com.gjt.demo.serverhandlers.DemoHttpServerS2.run
D 16%- 288 bytes - 12 alloc. com.sun.net.httpsenver.HttpExchange.sendRespon

b Heap Walker
I CPU Views

- @ 1.3%-240 bytes - 10 allec. com.gjt.demo.server.handlers.DemoHttpServertof
g Threads T 1.3% - 240 bytes - 10 alloc. java.lang.String.split

P 0150 - 94 bnbar < 1 allne Gava lann Ghrinn el
{? Monitors & Locks \r - o

Memory analysis

Allocation recording can only measure where objects are allocated and has no information on
the references between objects. Any memory analysis that requires references, such as solving
a memory leak, is done in the heap walker. The heap walker takes a snapshot of the entire heap
and analyzes it. This is an invasive operation that pauses the JVM - potentially for a long time -
and requires a large amount of memory.

A more lightweight operation is marking all objects on the heap before you start a use case, so
that you can find all newly allocated objects when you take a heap snapshot later on.

The JVM has a special trigger for dumping the entire heap to a file that is named after the old
HPROF profiling agent. This is not related to the profiling interface and does not operate under
its constraints. For this reason, the HPROF heap dump is faster and uses less resources. The
downside is that you will not have a live connection to the JVM when viewing the heap snapshot
in the heap walker and that some features are not available.

@ No snapshot has been taken.

Telemetries
For a maximum of features:
Live Memaory
Press to take a JProfiler heap snapshot
Heap Walker X o i o X
« The snapshot is displayed in this frame and saved together with profiling infoermation
from other views
CPU Views = For live profiling sessions, special features are available
» Integrations with other views require this snapshot type
Threads

Press x to indicate the starting point of 2 use case

Monitors & Locks
= All objects that are currently on the heap will be marked as old

» When you take the next heap snapshot, new and old objects will be listed separately

Databases in the header

= You can select new or old objects only, making it easy to track down memory leaks
HTTP, RPC & JEE

For a minimum of overhead:

JVM & Custom Probes
Press é to take an HPROF heap snapshot

P O @ o vumpg b

"y MBeans

= The snapshot is saved separately and displayed in another frame
» Not all features are available

= Memory and CPU overhead in the profiled VM are lower than for the JProfiler

29

Method call recording

Measuring how long method calls take is an optional recording, just like allocation recording.
Method calls are cumulated into a tree, and there are various views that show the recorded data
from different perspectives, such as a call graph. The recording for this type of data is called
"CPU recording" in JProfiler.

T . Thread status: Thread selection: Aggregation level:
elemetries
B Runnable & All thread groups @ Methods
’!' Live Memo 'f
s . | iper

=

/ +]

a 1,675r
ﬁ Heap Walker
jpers
I CPU Views ,'_:I
E L2
Call Tree
Hot Spots /Q estHandler R N c.e.d.shandlers.RequestHandler m lpers
/@ I 5 executedpatuery _ -
Call Graph self, 3inv. 1,796 ms, 471 us self, 3 inv. \ 5
\\
Outlier Detection /@ W
= I\ A
Complexity Analysis \\ >
IR 10
Call Tracer b '.\ .\\
\ A
JavaScript XHR \
h \) *?
= 7 p \ 167 1

Threads

Under particular circumstances it may be useful to see the chronological sequence of method
calls, especially if multiple threads are involved. For these special cases, JProfiler offers the "Call
tracer" view. That view has a separate recording type that is not tied to the more general CPU
recording. Note that the call tracer produces too much data to be useful for solving performance
problems, it is only intended for a specialized form of debugging.

1.560 traces, 0 hidden element

’ Telemetries —
0 RMI TCP Connection(3)-192.168.19.1 (6 traces) +0ps
java.util.concurrent (1 trace) +0ps
":' Live Memory <] Jjava.util.concurrent. ThreadP oolExecutorS\Waor... (1 trace) +0ps
’ @ run() +0ps
com.gjft.demo.server.handlers (5 traces) +0ps
'ﬁ Heap Walker <] com.ejt.demo.server.handlers.RmiHandlerlmpl (3 traces) +0ps
@ remoteOperation() +0ps
@ perfermWork() +0ps
I CPU Views (R makeHitpCalls() +0ps
G com.gjt.demo.server.handlers.HandlerHelper (2 traces) +0ps
Call Tree ; pool-1-thread-2 (19 traces) + 516 ps
L= RMITCP Cennection(3)-192.168.19.1 (2 traces) +82ms 571 ps
Hot Spots ; pool-1-thread-2 (18 traces) + 83 ms 880 ps
2 RMITCP Connection(3)-192.168.19.1 (2 traces) + 159 ms 682 ps
Call Graph : pool-1-thread-2 (18 traces) + 160 ms 993 ps

FURAL TN i kimen £ 100 1E0 40 PR W— VEN €T

Outlier Detection com.gjt.demo.server.handlers. RmiHandlerd mpl.performWork()

com.gjt.demo.server.handlers. RmiHandlerdlmpl.remoteOperation()

Complexity Analysis X g
java.util.concurrent. ThreadPoolExecutorSWerker.run()

Call Tracer

JavaScript XHR

Threads

The call tracer depends on CPU recording and automatically switches it on if necessary.

Another specialized view that has its own recording is the "Complexity analysis". It only measures
the execution times of selected methods and does not require CPU recording to be enabled. Its
additional data axis is a numeric value for the algorithmic complexity of a method call that you

can calculate with a script. In this way, you can measure how the execution time of a method
depends on its parameters.

30

” Telernetries Complexity recording: | (@ sort.Comparisen.executeBubbleSort(int]], int) v
Curve fits: Cuadratic (F°=0.997) [best fit] v

’!:!' Live Memaory
] 1
"ﬁ Heap Walker 20

I CPU Views
15+

Call Tree

Hot Spots

Time in ms

Call Graph
Outlier Detection
Complexity Analysis

Call Tracer . s

JavaScript XHR 0 T T T T T
0 1,000 2,000 3,000 4,000 5,000

Threads Complexity

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be recorded.
The rate of such events varies greatly. For a multi-threaded program where threads frequently
coordinate tasks or share common resources, there can be an enormous number of such events.
This is why such chronological data is not recorded by default.

When you switch on monitor recording, the "Locking history graph" and the "Monitor history"
view will start to show data.

‘ Telemnetries currentevent. | [€ < ¥ Pl 27140 [ato1.177.027)

Event of interest: no nodes of interest have been marked Recording thresholds: *

’i:!' Live Memaory

a
ﬁ Heap Walker
Thread-2 [main] -------- | Class: hezier.BezierAnim§Demo

Monitor Id: &

I CPU Views
B Threads | AWT-EventQueue-0 [main] Class: java.lang.Object
—— Monitor Id: &
r? Menitors & Locks

I I R I T R A R R R R A B R A A R R A A R A A B R O R A I R R A A A R AN I AN R R

Current Locking Graph 0:10 0:20 0:30 0:40 0:50)

Current Monitors

Lacking History Graph

Monitor History

mm Event mmm Eventinvelving nodes of interest m= Currently displayed event ¢
Menitor Usaae Statistics

To eliminate noise and reduce memory consumption, very short events are not recorded. The
view settings give you the possibility to adjust these thresholds.

31

€ Monitor History Graph View Settings X
Recording Time line
Recording Threshelds

Monitor blocking threshold: 1,000 | % ps

Menitor waiting threshold: 100,000 | % Hs

All events with a duration that is lower than the configured
threshold will be discarded.

‘Warning: If you lower the thresholds, more data will be

recorded. Please note that the associated memery overhead
grows linearly in time,

Probe recording

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By default,
no probes are recorded and you can toggle recording separately for each probe. Some probes
will add very little or no overhead, and some will create a considerable amount of data, depending
on what your application is doing and how the probes are configured.

€ Session View Profiling Window Help Demo server - IProfiler - a X
13 B = -~ 3 —
@ H 2 £ 8 7 4% L 2 0|@
Start Save Session Start Stop Change Ao View Stop Probe
Center ™ Snapshot Setfings | Recordings Recodings Tracking | " - Bookmark | P Setfings Help JIDBC
- G . 5 . IDBC ;
22" Threads @ Time Line B Connections """ IDBC connections nd excution of ststements
Q Monitors & Locks Both open and closed Sort by start time g hd
O I L B A B
Physical Connections 010 20 0:30
| |
; Databases jdbc:deme://remote_hest/test[ID 1] 1 1 |
Jjdbc:derno://remote_host/test[ID 2] HE = Em [N |
IDBC Jjdbc:dema://remote_host/test[ID 3] L} . mEm |
. Jjdboidemno://remote_host/test[ID 1] | i
JPA/Hibernate | |
jdbe:demo://remote_host/test[ID) 3] L LLI Ly
MangeDB Jjdbodemno://remote_host/test[ID 5] I |
jdbe:demne://remote_host/test[ID 7] u |
Cassandra |
Jjdboidermno://remote_host/test[ID 2] 1 || 1
HBase jdbe:demo://remote_host/test(ID 9] I 1
Jdboidemo://remote_host/test[ID 1. L] LN
Q HTTP, RPC & JEE
o VM & Custom Probes
{‘%‘ MEBeans = |dle ™= Statement execution S Prepared statement execution ™ Batch exe® p ko
T & @ 3 active recordings &) Auto-update2 s VM #1 00:25 4 Profiling

Just like allocation recording and method call recording, probe data is cumulated and chronological
information is discarded except for time lines and telemetries. However, most probes also have
an "Events" view that allows you to inspect the single events. This adds a potentially large overhead
and has a separate recording action. The status of that the recording action is persistent, so that
when you toggle probe recording, the associated event recording is toggled as well if you have
switched it on previously.

32

@ Session View Profiling Window Help Demo server - JProfiler - a X
a - iy f —
@ H =2 82 8P C % 0 @ |5
Start Save Session Start Stop Change Add View Stop Probe Stop | Freez
Center P Gnapshat Setfings | Recordings Recordings Trscking | U" CC Bockmark | P Setfings Help 1DBC Events | View
—) N JDBC E
E5 Threads ‘eaks B Telemetrics X Events " IDBC connections and execution of stetements
r? Monitors & Locks All types v Filter in all text columns = | | - v
Start Time Event Type Duration Connecticn 1D Description Thread
Datab .. = Connectio.. Opsi jdbodemon/fre.. Servlet requ...
Fraheses | Preparedst.] 102mell __ [SELECT*FROM .
B Prepared st... 62,582 ps 1 INSERT INTO CU... Servlet requ...
JDBC B Prepared st... 69,201 ps 1 INSERT INTO OR... Servlet requ...

§ W Prepared st.., 82,791 us 1 INSERT INTQ OR... Serviet requ...
JPA/Hibernate ... 3 Connectio... Ous2 jdbademoi/fre.. RMITCP Co..
MongeDE B Statement ... T75ms 2 SELECT iid, i.ava.. RMITCP Co..

1 Connectio.. Ops3 jdbcdemoi/fre.. RMITCP Co..
TermmilE B Statement .. 933ms3 SELECTiid, i.ava... RMITCP Co..
Statement ... 922 ms 2 SELECT i.id, i.ava... RMITCP Co...
HBase NNd RIS THol M Statement 554 me 3 SFIFCTiid iava RMITOP
Total from 24 ... 6,840 ms
Q HTTP, RPC & JEE o Selection [m] Duration
Stack trace:
° JVM & Custom Probes javax.persistence TypedQuery.getResultList()
com.gjt.demo.server.handlers. RequestHandler. executelpaQuery(javax. persistence. EntityManager)
r—Y com.ejt.demo.server.handlers. RequestHandler.makelpaCall()
MBeans
‘w com.ejt.demo.server.handlers.RequestHandler. performWork()
*+ 4 @ 3 active recordings € Auto-update2 s VM #1 00:09 @ Profiling

The JDBC probe has a third recording action for recording JDBC connection leaks. The associated
overhead with looking for connection leaks is only incurred if you are actually trying to investigate
such a problem. Just like the event recording action, the selection state of the leak recording
action is persistent.

€ Session View Profiing Window Help JDBC demao - JProfiler - a X
& < | M 1 =
@ H 2 82 8 % C % 0 @ |32
Start Save Session Start Stop Start Add 3 Stop Probe Stop | Freez
Center ™ Gnapshot Setfings | Recordings Recordings Trscking | U" CC Bockmark | PO Help 1DBC Lesks | View|
) - i JDBC E
! Telemetries ! h Hot Spots) Connection Leaks | ¥\ snections and exscution of sistements
. This view shows all virtual connections that have been open for more than 10 seconds. Virtual connections
-l:" Live Memory are what you get frem cennection poels and block a physical connection until they are closed.
Connections of type "Unclosed collected” are definite leaks while "Unclosed” connections are strong
b Heap Walker candidates.
All types - Filter in all text columns = | Cb -
I CPU Views
Opened At Open Since Type Description Thread Class Mame
— 0:08.227 Jul 2..| 13,871 ms] _ Unclo..idbchsgldb:hsgl://
Threads 0:15.889 [Jul 2... 6,209 msmm Unclo.. jdbchsgldb:hsgl//l., pooel-1-threa.. jdk.proxy2.SProx..
{? Menitors & Locks
; Databases Stack trace:
Jjavax.sql.DataScurce.getConnection()
JDBC jdbcJdbeTestWorker.call()
§ jdbecJdbeTestWorker.call()
[Erlirramas javautil.concurrent. ThreadPoolExecutorSWerker.run()
MongeDB
Y @ 3 active recordings € Auto-update2 s VM #1 00:22 @ Profiling

Recording profiles

In many situations, you want to start or stop various recordings together with a single click. It
would be impractical to visit all the corresponding views and toggle the recording buttons one

33

by one. This is why JProfiler has recording profiles. Recording profiles can be created by clicking
on the Start Recordings button in the tool bar.

@ Session View Profiing Window Help Demo server - JProfiler - a X
- - -l ey ¥ — —
@ H 2|88 T C % 2 @ o B
Start Save Session Start Stop Change Add View Show Stop
Center P Snapshat Setfings | Recordings |Recordings Trscking | U" CC Bockmark | P Setfings HEP | gend CRU
1 JDBC and JNDI
” .] Allocations Aggregation level:
Telemetries — - - c v @ Methods ~
I " Configure Recording Profiles
. H Save Current Recordings As Profile fil.concurrent. ThreadPoolExecutor§Worker.run
-‘:’. Live Memory G — = TR TS uinegr.demo.server.DemoServerS3.run

W162%-545ms-1in Jjava.awt.EventDispatchThread.run

°| 2.6% - 226 ms - 1inv. com.ejt.deme server.gui.GuiDemoServer$151.run
b Heap Walker

I CPU Views

Call Tree

Hot Spots

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR
Threads . Ml)

T @ 3 active recordings € Auto-update 5 s VM #1 00:09 @ Profiling

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create by the
selected recordings and tries to discourage problematic combinations. In particular, allocation

recording and CPU recording do not go well together because allocation recording will distort
the timings of CPU data significantly.

€ Configure Recording Profiles X

Configured recording profiles:

&% JDBC and JNDI +
‘g’ Allocations " :
CPU data Call tracer Complexity data X
[7 Allocation call stacks Monitor recording Custern probes
Record database probes: [none] -
Record HTTP, RPC & JEE probes: [none] -
Record JVM & custom probes: [none] -

Recording overhead:

@ Help “ Cancel

You can activate recording profiles at any time while a session is running. Recording profiles are
not additive, they stop all recordings that are not included in the recording profile. With the Stop
Recordings button you stop all recordings no matter how they have been activated. To check

34

what recordings are currently active, hover the mouse over the recordings label in the status
bar.

—
Call Tree
Hot Spots
Call Graph
Outlier Detd The fellowing data is being recorded:
Complexity| ' CPU data
i IpBC
Call Tracer | o JNDI
JavaSeript You can start and stop recording with view-specific
— tool bar buttons or recording profiles.
Thread @
- W
T+ & @ 3 active recerdings (a7] Aute-update 5 s VM #1 00:10 4 Profiling

A recording profile can also be activated directly when you start profiling. The "Session startup"
dialog has an Initial recording profile drop-down. By default, no recording profile is selected, but
if you need data from the startup phase of the JVM, this is the place to configure the required
recordings.

© Session Startup X

Settings
Call tree recording: Instrumentaticon, 1 exceptional method Edit
0 For low-overhead CPU profiling, switch to sampling.
Call tree filters: 1 filter rule for method call recording Edit

@ Profiled packages have been defined. If the overhead is too high, make your filters
more specific or switch to sampling.

Trigger settings: No active triggers Edit
Database probe settings: 5 enabled probes Edit
HTTP, RPC & JEE probe settings: | 7 enabled probes Edit
WM & custom probe settings: 5 enabled probes Edit

Startup And Exit

Initial recording profile: | JDBC and JNDI v Configure

VM exit action: Let the JVM exit and disconnect ¥ More~
Performance

Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile.

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has a
system for defining triggers [p. 128] that execute a list of actions. The available trigger actions
also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed. In
that case, you would go to the session settings dialog, activate the Trigger Settings tab and define
a method trigger for that method. For the action configuration, you have a number of different
recording actions available.

35

@ Choose an Action >

Available actions:

Record prefiling data
\® Start recording
@ Stop recording
!:, Start call tracer
Qg Step call tracer
’L Start moniter recerding
’:-, Step monitor recerding
I8 Trigger heap dump
* Mark heap
& Trigger thread dump
';‘i Trigger moniter dump
Record probe data
€2 start probe recording
e Step probe recording
E Start probe tracking

E Stop probe tracking
T Savesnapshots to disk

Description

OK Cancel

The "Start recording" action controls those recordings without any parameters. Usually, when
you stop and re-start a recording, all previously recorded data is cleared. For the "CPU data" and
"Allocation data" recordings, you also have the option to keep the previous data and continue
cumulating across multiple intervals.

@ Trigger Wizard - Methed invocation X
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4. Description .
5. Group ID L,‘ Start recording +
6, Finished Cpu data Reset data x
Allocation data Reset data
Thread data
VM telemetry data

Complexity analysis

4 Back Next P Finish Cancel

Method triggers can be added conveniently in the call tree by using the "Add method trigger"
action in the context menu. If you already have a method trigger in the same session, you can
choose to add a method interception to an existing trigger.

36

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

Q_ 60.7% - 15,329 ms - 7 inv. java.util.concurrent. ThreadPoolExecutorS\Worker.run
ﬁ- 36.5% - 9,211 ms - 7 inv. com.gjt.demo.server.DemoServer$3.run

@ ® 14.7% - 3,701 ms - 4 inv. HTTP: /demo/viewd

@ 914 ms - 2 inv. HTTP: /demo/view5

@1 6.0% - 1,505 ms - 2 inv., HTTP: /demo/view2

@ 3.8%- 959 ms - 1 inv. HTTP: /demo/viewl

a‘ 2.7% - 690 ms - 1 inv. HTTP: /demo/view3

@ 1.4% - 346 ms - 1inv, com.ejt.dema.server.handlersJdbclobHandler.run

s.JmsHandler.onMessage

=3 Show Call Graph dlers.JmsHandler.handleMessage
T Show Threads nandlers.JmsHandler.performWork
andlers.JmsHandler.makeHttp Call

EI Add Method Trigger andlers.JrmsHandler.makeRmiCall

msHandler$)msType.getDestination
msHandler$lmsType.<clinit>
Q=< Split Methed with a Script msHandlerS)msTypevalues

E @) Add As Exceptional Methed

g (-] Intercept Method With Script Probe 1sHam:IIerSJmsT)rpe‘.getDuration
q . squestHandler.« clinit>
[m]E] lerge splitting leve Chrl+A 1
@ a 2Server§181.run
SE Remove Selected Sub-Tree Delete
T Add Filter From Selection 3 - @

By default, triggers are active when the JVM is started for profiling. There are two ways to disable
triggers at startup: You can disable them individually in the trigger configuration or deselect the
Enable triggers on startup check box in the session startup dialog. During a live session, you can
enable or disable all triggers by choosing Profiling->(Enable | Disable) Triggers from the menu or

clicking on the I trigger recording state icon in the status bar.

JavaScript XHR

Threads
*+ 4 D @ 3active recordings @D Auto-update5s

Sometimes, you need to toggle trigger activation for groups of triggers at the same time. This is
possible by assigning the same group ID to the triggers of interest and invoking Profiling->Enable
Triggers Groups from the menu.

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is already
being profiled. j pcontrol | er requires that the JProfiler MBean is published, otherwise it will
not be able to connect to the profiled JVM. This is only the case if the profiling agent has already
received profiling settings. Without profiling settings, the agent would not know what to record
exactly.

One of the following conditions has to apply:

* You have already connected to the JVM with a JProfiler GUI

« The profiled JVM was started with an - agent pat h VM parameter that included both the
nowai t and the conf i g parameters. In the integration wizards, this corresponds to the Startup
immediately mode and the Apply configuration at startup option in the Config synchronization
step.

+ TheJVM was prepared for profiling with the j penabl e executable and the - of f | i ne parameter
was specified. See the output of j penabl e - hel p for more information.

Specifically, j pcont r ol | er will not work if the profiled JVM was started only with the nowai t
flag. In the integration wizards, the Apply configuration when connecting with the JProfiler GUI option
on the Config synchronization step would configure such a parameter. For more information, see
the help topic on setting profiling settings at startup [p. 243].

37

jpcontroller presents you with a looping multi-level menu for all recordings and their parameters.
You can also save snapshots with it.

=

ingo@ubuntu: ~
ingo@ubuntu:~$ sudo -u tomcats8 jprofilerie/bin/jpcontroller

Connecting to org.apache.catalina.startup.Bootstrap start [6125] ...
Starting JMX management agent ...
Connection established successfully.

Please select an operation:

start recording [1]
Stop recording [2]
Enable triggers [3]
Disable triggers [4]
Heap dump [5]

Thread dump [6]

Add bookmark [7]
Save snapshot [8]
Quit [9]

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the com
jprofiler.api.controller.Controll er classtostartand stop recordings programmatically.
See the chapter on offline profiling [p. 128] for more information and for how to get the artifact
that includes the controller class.

If you want to control recordings in a different JVM, you can access the same MBean in the profiled
JVM that is also used by j pcontrol | er. Setting up programmatic usage of the MBean is
somewhat involved and requires quite a bit of ceremony, so JProfiler ships with an example that
you can reuse. Check the file api / sanpl es/ nbean/ sr c/ MBeanPr ogr anmat i cAccessExanpl e.
j ava. It records CPU data for 5 seconds in another profiled JVM and saves a snapshot to disk.

38

Snapshots

Until now, we have only looked at live sessions where the JProfiler GUI obtains the data from the
profiling agent that is running inside the profiled JVM. JProfiler also supports snapshots where
all profiling data is written to a file. This can be of advantage in several scenarios:

* You record profiling data automatically, for example, as part of a test so that connecting with
a JProfiler GUI is not possible.

+ You want to compare profiling data from different profiling sessions or look at older recordings.
* You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain uncompressed to
allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot tool bar
button. JProfiler pulls all profiling data from the remote agent and saves it to a local file with a
".jps" extension. You can save multiple such snapshots during the course of a live session. They
are not opened automatically and you can continue to profile.

@ Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - [m] X

- A i, - i — —
P @IH|® £ £ & © &% 2 @ @ @
Start Save Session Start Stop Start Add View Show Stop Probe

St Run GC Export Hel)
Center P | snapshot |Setings | Recordings Recordings Tracking | o Boakmark PO cettings ®P legend = HTTP Server

HTTP Server ?
‘ Telemetries 1, Hot Spots ! Telemetries Events E Tracker Incoming HTTP Requests
“| Thread status: 0 Thread selection: Aggregation level:
Live Memoi
l’i Y EX All states v 88 Al thread groups A @ Methods ~
2 . . Hot Spot Time Average Time Events

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you can
conveniently open a snapshot that you have just saved. When opening a snapshot while the live
session is still running, you have a choice of terminating the live session or opening another
JProfiler window.

@ IProfiler X

The Current Window Is In Use

How do you wish to proceed?

% Open a new window

% Use this window
If you select this option, the currently active profiling session
will be stopped.

Cancel

When you use the snapshot comparison feature in JProfiler, the list of snapshots is populated
with all the snapshots that you have saved for the current live session. This makes it easy to
compare different use cases.

39

I File View Window Help Snapshot Comparisen - IProfiler - a X

\ . \ \
4 § = e > o
Memory CPU Telemetry Probe Start S 3 -
aris: 3 ris 2015 Center o .-E'.";: =7
Available Snapshots |]2
testl.jps
2023-08-25 11:06:39
test2.jps

2023-08-25 11:06:41

test3.jps
2023-08-25 11:06:43

@ Please select snapshots on the left and create a comparison

In general, you can open snapshots by invoking Session->Open Snapshot from the main menu or
by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations also support
opening JProfiler snapshots through the generic Open File actions in the IDEs themselves. In that
case, you get source code navigation into the IDE instead of the built-in source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with recorded
data are available. To discover what kind of data has been recorded, hover the mouse over the
recording label in the status bar.

Call Graph

Qutlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

Menitors & Locks
The following data has been recorded:

n
1
; Databases l CPU data
A JpBC
9 HTTP Server
@ HTTP, RPC & JEE
Only views related to these recordings are available,
v @
-
- A4
2 3recordings Aug 25, 2023, 11:06:39 AM VM #1 00:09 H Snapshot

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. So when the profiled
JVM is terminated, the profiling session in JProfiler is closed as well. To continue profiling when
a JVM exits, you have two options, both of which can be activated in the session startup dialog.

40

@ Session Startup X

Settings

Call tree recording: Instrumentation Edit
0 For low-overhead CPU profiling, switch to sampling,

Call tree filters: 1 filter rule for method call recording Edit
a Profiled packages have been defined. If the overhead is too high, make your filters

more specific or switch to sampling,

Trigger settings: Mo active triggers Edit

Database probe settings: 5 enabled probes Edit

HTTR, RPC & JEE probe settings: | 7 enabled probes Edit

JVM 8t custom probe settings: 5 enabled probes Edit

Startup And Exit

Initial recording profile: | [no recordings] v Configure
VM exit action: Let the JVM exit and disconnect More ~
Let the JWM exit and disconnect
Performance Keep the VM alive for profiling
Overhead; = Save and immediately open a snapshot
The overhead is composed of the selected profiling settings and the selected recording profile.

* You can prevent the JVM from actually exiting and keep it artificially alive as long as the JProfiler
GUI is connected. This may be undesirable when you are profiling a test case from the IDE
and want to see the status and total time in the test console of the IDE.

* You can ask JProfiler to save a snapshot when the [VM terminates and switch to itimmediately.
The snapshot is temporary and will be discarded when you close the session unless you use
the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of snapshots.
In triggers, you can add a "Save a snapshot" action that saves the snapshot on the machine
where the profiled JVM is running. When the trigger runs during a live session, the snapshot is
also saved on the remote machine and may not include parts of the data that have already been
transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

+ For test cases, start recording in the "JVM startup" trigger and add a "JVM exit" trigger to save
the snapshot when the JVM is terminated.

+ For exceptional conditions like the "CPU load threshold" trigger or for periodic profiling with
a"Timer trigger", save the snapshot after recording some data with a "Sleep" action in between.

41

@ Trigger Wizard - CPU load threshold

1. Trigger type Configure actions for this trigger
2, Threshold

3. Actions Configured actions:

4, Description .

5. Group ID E Start recerding

6. Finished E3

C Sleep

@ Stop recording
H Save snapshot

Snapshot file:

test

Add a unique number to the snapshot name

Note: If the JProfiler GUl is connected, the saved snapshot will only have

partial content.

HPROF heap snapshots

4 Back Next P

Finish

Cancel

In situations where taking a heap snapshot produces too much overhead or consumes too much
memory, you can use the HPROF heap snapshots that the JVM offers as a built-in feature. Because
the profiling agent is not required for this operation, this is interesting for analyzing memory
problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

+ For live sessions, the JProfiler GUI offers an action in the main menu to trigger an HPROF heap

dump.
@ Session View m Window Help Animated Bezier Curve Demo - JProfiler
[@ H ﬁ Start Recordfngs 3 + 0
Start - Save ﬁ Stop Recordings F8 - View e
Centes Snapsh -'; Start Async And Remote Request Tracking Ctrl+Fg ik Settings
m Disable Triggers And Custom Probes Fo
' Telemetries Enable Trigger Groups Shift+F6 |Events E Tracker
| ® Save HPROF Snapshot Ctrl+5Shift+5
-‘:ﬂ. Live Memory * Mark Heap
{3 Run Garbage Collector Shift+F4
,'ﬂ Heap Walker M4 Add Bookmark F3
Edit Bookmarks Shift+F3
I CPU Views Show Global Filters for Methed Call Recording

Show

Legend

@

Stop Probe
HTTP Server

Time

HTTP Server ?

Incaming HTTP Requests

Aggregation level:
v | | @ Methods ~

Average Time Events

+ JProfiler has a special "Out of memory exception" trigger to save an HPROF snapshot when
an Qut OF Menor yEr r or is thrown. This corresponds to the VM parameter "

- XX: +HeapDunmpOnQut O Menor yEr r or

that is supported by HotSpot JVMs.

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

42

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

@ Trigger Wizard - Out of memory exception X

1. Trigger type Configure actions for this trigger
2. Actions
3. Descriptien Configured actions:
4, Group 1D 1) #
5. Finished lr | Create an HPROF/PHD heap dump
4 Back Next P Finish Cancel

The jmap executable in the JDK can be used to extract an HPROF heap dump from a running
JVM.

JProfiler includes the command line tool j pdunp that is more versatile than jmap. It lets you
select a process, can connect to processes running as a service on Windows, has no problems
with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files. Execute it with the
- hel p option for more information.

JDK Flight Recorder snapshots

JProfile fully supports opening snapshots saved by Java Flight Recorder (JFR). The Ul is notably
different in this case and is adjusted to the capabilities of JFR. See the JFR help topics [p. 216] for
more details.

) https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-BOF3-2803269B7F41

43

https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

Telemetries

One aspect of profiling is monitoring scalar measurements over time, for example, the used
heap size. In JProfiler, such graphs are called telemetries. Observing telemetries gives you a
better understanding of the profiled software, allows you to correlate important events over
different measurements and may prompt you to perform a deeper analysis with other views in
JProfiler if you notice unexpected behavior.

Standard telemetries

In the "Telemetries" section of the JProfiler Ul, a number of telemetries are recorded by default.
For interactive sessions, they are always enabled. Some telemetries require that a special type
of data is recorded. In that case, a recording action will be shown in the telemetry.

To compare multiple telemetries on the same time axis, the overview shows multiple small-scale
telemetries on top of each other with a configurable row height. Clicking on the telemetry title
activates the full telemetry view. The default order of the telemetries in the overview may not
be suitable, for example, because you want to correlate selected telemetries side by side. In that
case you can reorder them with drag and drop in the overview.

” Telemetries v
frrrrrrr prrrrrr |
: 0:20 0:30 04
Overview 7008
Memory 0:15.1 [Jul 25, 2023 11:58:16 AM]
Memory = Freesize 1672 ME
Recorded Objects OMB mm Used size: 1003 ME
Recorded Throughput mm Committed sizer 27.65 MB
Recorded Objects 2
GC Activity 1/10 allocations -
Classes
Threads Recorded Throughput | o
A

0 allocations

CPU Load

1%
Custom Telemetries
GC Activity
‘i:!. Live Memaory 0%
4000
.
ﬁ Heap Walker Claseee

Row height: —@ /@]

The full view shows a legend with current values and may have more options than what is visible
in the overview. For example, the "Memory" telemetry allows you to select single memory pools.

’ Telernetries Memory pool: | Heap A

N

Overview — G1 Eden Space
70ME 4+— [~ G10ld Gen
Memory] — G1 Survivor Space
Recorded Objects 50 ME 41— Non-Heap
] — CodeHeap 'non-nmethods’
Receiisdiihioughput] [~ CodeHeap 'nen-profiled nmethods'
GC Activity 30MB _:_ [~ CedeHeap 'profiled nmethods'
4 — Compressed Class Space
Classes 40MB — ' Metaspace (non-class)
] T
Threads] I }
] | |
CPU Load 30ME I I
Custem Telemetries 20 ME _:
'I:I Live Memary]
. 10ME 5
b Heap Walker :
= Freesize: 17.9ME ™ Usedsize: 975 MEB mm Committed size: 27.65MB =y /@)_ _|
|

JProfiler has a large number of probes [p. 104] that record events from high-level systems in the
JVM and important frameworks. Probes have telemetries that are displayed in the corresponding
probe views. To compare these telemetries to the system telemetries, you can add selected

probe telemetries to the top-level telemetries section. From the toolbar, choose * Add
telemetries->Probe Telemetry and select one or more probe telemetries.

@ Select Probe Telemetry X

Available telemetries:

E Databases
M Joec
| Awverage Statement Execution Time
" Recorded Open Connections
& JPA/Hibernate
B MeongeDEB
Cassandra
E HBase
@ HTTP, RPC & JEE
’ HTTP Server
B HTTP Client
a Web Services

@ VM & Custom Probes
& Class Loaders
Exceptions

@ Sockets

Filter: | i~

Each added probe telemetry gets its own view in the telemetry section and is also displayed in
the overview.

45

10 20 030 040 0:50
’ Telemetries

Overview

Memery 4
Recorded Objects 1 A
30 t

Recorded Throughput k|

GC Activity

Classes T A
» Ul

Threads e V

CPU Load

JDBC: Executed Statements 7

10 V
‘ Live Memory 1
ﬁ Heap Walker 1

= B Executed Statements: 22 _,Q |- -|

Once a probe telemetry has been added, data is only shown if probe data has been recorded.
If not, the telemetry description contains an inline button to start recording.

- Q- Filte =
Telemetries
B B B B B B B I S

o1a 0:20 0:30
Overview

Memary

Recorded Objects

Recorded Throughput CPU Load
GC Activity e LN

Classes 40

Threads
JDBC: Executed Statements

CPU Load
o
IDBC: Executed Statements 2

MongoDB: Executed Operati...

‘ Live Memary
o

i Heap Walker Row height: ———@ o ky

MongoDB: Executed Operati... L]

The context menu for probe telemetries contains the recording actions as well an action to show
the corresponding probe view.

46

i Qb Filte v
Telemetries
B B B B B B B I S

010 0:20 0:30
Overview

Memory o

Recorded Objects

Recorded Throughput CPU Load
GC Activity 0% _,-/'\

Classes 40

Threads
JDBC: Executed Statements

CPU Load

JDBC: Executed Statements

MengoDB: Executed Operati...

MongoDB: Executed Operati [shew MongoDB Probe View

‘ Live Memory B =) Show Full Telemetry
= €2 Record MongoDB
Row height: ——@
h e ? x Remove Telemetry f@ F

Similar to the probe views, the VM telemetries for the recorded objects depend on memory
recording and also have a recording button and a similar context menu.

Finally, there are "tracking" telemetries that monitor a scalar value that is selected in another
view. For example, the class tracker view allows you to select a class and monitor its instance
count over time. Also, each probe has a "Tracker" view where selected hot spots or control objects
are monitored.

— N JDBC E
= Threads e ¢ Events Bl Tracker IDBC connections and execution of statements
=) g Show: | [Event durations] jdbchsqldbihsql://localhast:9012/t... w1 v || |9
1
Fe RS ERRRRERRER R R R RN AR R RN N R AR R R R R AR
010 0:20 0:30 0:40 0:2
; Databases
2s
IDBC k|
JPA/Hibernate 7
MongeDE 1
Eazandia . ® | 0:13.1[ul25 2003 11:5814 AM]
. |
HBase B Statement execution: Os
1 mm Prepared statement execution: O
o HTTP, RPC & JEE 4 W Batch execution: 1.08s
| mm Total: 1.08s
° JVM & Custom Probes 4
Ay MBeans B Statemnent execution: 0.53 s W Prepared statement execution: 0.01s = Bafr }9 [

Bookmarks

JProfiler maintains a list of bookmarks that are shown in all telemetries. In an interactive session,
you can add a bookmark at the current time by clicking on the Add Bookmark tool bar button, or
by using the Add Bookmark Here feature in the context menu.

47

@ H 2 82 B8 % S|% | @ 0 + F

Start = Save Session Start Stop Start P Boor W - Add Configure
Center P Gnapshot Setings Recordings Recordings Tracking un Bookmark PO cettings P Telememy Telemeties
w L R RS RS TR] T
. Telernetries 0:10 0:20 0:30 0:40 0:
. | | |
Overview ‘ ‘ ‘
Memary il ‘ ‘ ‘
Recorded Objects 1 ‘ ‘ ‘
Recorded Throughput 4
GC Activity
T I’m' Add Bookmark Here I
Classes Delete Bookmark
104 jc ete Bookmal
Threads Edit Bookmarl
CPU Load Graph Type »
Custom Telemetries 1 Zoom »
i 1 T Export View Ctrl+R
’!:I' Live Memary
4 View Settings Ctrl+T
b Heap Walker -
== Runnable threads: 0 ™ Blocked threads: 0 =3 Threadsin Met I/0: 6 =3 '+ /@ b
|
\ @ 2 active recordings) Auto-update2 s VM #1 00:36 @ Profiling

Bookmarks can not only be created manually, they are added automatically by the recording
actions to indicate the beginning and the end of a particular recording. With trigger actions or
with the controller API, you can add bookmarks programmatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can edit
existing bookmarks and change these properties.

@ Edit Bookmark X

Bookmark Properties

=4yl WSt o pped JDBC recording
Color: a Default
Custem

Draw dashed line

If right-clicking several bookmarks in a telemetry is too inconvenient, you can use the Profiling->Edit
Bookmarks action from the menu to get a list of bookmarks. This is also the place where you can
export bookmarks to HTML or CSV.

48

@ Edit Bookmarks

Available bookmarks:

Bookmark
0:12.991 [Jul 2 mm Unnamed bookmark
0:32.981 [Jul 2 il Stopped JDBC recording
0:37.991 [Jul 2 B Unnamed bockmark
+
@ Hep ok |

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler Ul to
supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible in the
"Telemetries" section. In a script telemetry, you have access to all classes that are configured in
the classpath of the current JProfiler session. If a value is not available directly, add a static

method to your application that you can call in this script.

@ Settings Edit Search Code Help Edit

DY R E PR &2 % O

_)) Modify — Test
Copy Gw P Fnd Replce o U compie | P

Line caption: | System Load Average

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists
of regular Java code. The following parameters are available:

OAVA
- com.jprofiler.api.agent.ScriptContext scriptContesxt

The expected return type is long

Telemetry script:
1 {long)ManagementFactory.getOperatingSystemMiBean () .getSystemLoadAverage () "

The above example shows a call to a platform MBean. Graphing scalar values of MBeans is more
conveniently done with an MBean telemetry. Here, an MBean browser allows you to select a

suitable attribute. The attribute value must be numeric.

49

€ Select Numeric MBean Attribute X

hd <~ hd

com.jprofiler.api.agent.mbean Mame Value
CoMm.suUR.Management HeapMemorylsage [java.lang.management.Memoryllsage]
Jjavalang committed 58720256

GarbageCollector [type] init 1073741824

MemaryManager [type] max 17146314752

MemoryPool [type] used 14639176
® ClassLoading [type] MonHeapMemoryUsage [javalang.management.Memorylsage]

ObjectMame Jjavalang:type=Memaory

I.H} Compilation [type]

@ Memory [type]

& OperatingSystem [bype]
[] Runtime [type]

@ Threading [type)]

java.nio

ObjectPendingFinalizatio... 0
Verbose false

Jjava.utillogging

Jjdk.management.jfr

@ Hel Cancel
P

You can bundle several telemetry lines into a single telemetry. That's why the configuration is
splitinto two parts: the telemetry itself and the telemetry line. In the telemetry line, you just edit
the data source and the line caption, in the telemetry you can configure unit, scale and stacking
which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be shown.
The scale factor is useful to convert a value to a supported unit. For example, if the data source
reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you set the scale
factor to -3, the values will be converted to bytes and by choosing "bytes" as the unit for the
telemetry, JProfiler will automatically display the appropriate aggregate unit in the telemetry.

L4] Configure Telemetries X
Three types of telemetries are shown in the Telemetries section:

+ The set of standard JVM telemetries that is always shown

+ Probes telemetries that are only shown in the probe views by default, but can be added here as well

+» Custom telemetries from MBeans or scripts

Probe telemetries- * © " — R
@ Edit Custom Telemetry %

Heap Memor o
committeg Mame: Heap Memory Usage
init [MBeal |yip. bytes -
Scale (10*-n): 0% @

Stack all lines in the telemetry and show an area graph

@ Help “ Cancel

@ Hel Cancel
P

Custom telemetries are added at the end of the "Telemetries" section in the order in which they
are configured. To reorder them, drag them to the desired position in the overview.

50

&
” Telernetries 0:10 0:20 0:30 0:40 0:

2GB

Overview

Memery

Recorded Objects
Recorded Throughput
GC Activity

Classes

1GE

Threads
CPU Load

Heap Memory Usage

‘i:!. Live Memaory
.
ﬁ Heap Walker

== committed: 0.05 GE = init: 1.07 GB /@)_ _|

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained in order
to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled once per
second. For the standard telemetries, there is no additional overhead for this data collection.
For custom telemetries, the overhead is governed by the underlying script or MBean.

51

CPU Profiling

When JProfiler measures the execution times of method calls together with their call stacks, we
call it "CPU profiling". This data is presented in a variety of ways. Depending on the problem you
are trying to solve, one or the other presentation will be most helpful. CPU data is not recorded
by default, you have to switch on CPU recording [p. 26] to capture interesting use cases.

Call tree

Keeping track of all method calls and their call stacks would consume a considerable amount of
memory and could only be kept up for a short time until all memory is exhausted. Also, it is not
easy to intuitively grasp the number of method calls in a busy JVM. Usually, that number is so
great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected data is
aggregated. In that way, you can tell how important method calls are with respect to the entire
activity in a certain time period. With single traces, you have no notion of the relative importance
of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with the
observed timings and invocation counts. The chronological aspect is eliminated and only the
total numbers are kept. Each node in the tree represents one call stack that was observed at
least once. Nodes have children that represent all the outgoing calls that were seen at that call
stack.

A A A A A:7 ms
é i Et é i: C1ms
¢ ¢ B:6ms
C D
C:3ms
2ms 1ms 3ms 1ms
D:1ms
method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when you
start CPU profiling, because the top-down view that follows method calls from the starting points
to the most granular end points is most easily understood. JProfiler sorts children by their total
time, so you can open the tree depth-first to analyze the part of the tree that has the greatest
performance impact.

52

” Thread status: 0 Thread selection: Aggregation level:
Telemetri
lemetries B Runnable 88 Allthread groups v @ Methods ~

() m— 3.0 - 359 ms - 5 inv. org.hsqldb.server.ServerConnection.run
":’. Live Memaory () m— 57,39 - 359 ms - 149 inv. org.hsqldb.server.ServerConnection.receiveResult
() 55,43 - 292 ms - 149 inv. org.hsqldb.Session.execute
() =, 40.0% - 211 ms - 30 inv. org.hsqldb.Session.executeDirectStatement

]
'ﬁ Heap Walker (D) = 35,9% - 190 ms - 30 inv. org.hsqldb Session.executeCompiledStatement
() = 34.9% - 124 ms - 30 inv. org.hsgldb. StatementDMQL execute
(@) = 34.8% - 184 ms - 30inv. org.hsqldb.StatementCuery.getResult
I CPU Views ()= 34,8% - 184 ms - 30 inv. org.hsqldb.QuerySpecification.getResult

() . 34,85 - 184 ms - 30 inv. org.hsqldb.QuerySpecification.getSingleRes
() - 34.8% - 184 ms - 30 inv. org.hsqldb.QuerySpecification buildRes:

=l () ™. 30,3% - 162 s - 1,425 inv. org.hsqldb.RangeVariableSRangek
Hot Spots @ 0.8% - 4,337 ps - 6,975 inv. org.hsqldb ExpressionColumn.getVal
@ 0.3% - 1,617 ps - 1,393 inv. org.hsgldb.navigator.RowSetMavigat
Call Graph @ 0.1% - 603 ps - 1,395 inv. org.hsqldb SessionData.startRowProce:
@ 0.1% - 300 ps - 1,395 inv. org.hsqldb.navigator.RowSetNavigator
Qutlier Detection @ 0.0% - 94 ps - 23 inv. org.hsgldb.RangeVariable. getlterator
@ 0.0% - 46 ps - 25 inv. org.hsqldb.navigator.RowSetNavigatorDat
Complexity Analysis @ 0.0% - 39 ps - 52 inv. org.hsqldb.RangeVariableSRangelteratorM;
@ 0.0%- 38 us - 26 inv. org.hsqldb.navigator.RowSetMavigatorDat:
Call Tracer @ 0.0%- 21 ps - 25 inv. org.hsqldb.result.Result.newResult
@ 0.0% - 64 ps - 26 inv. org.hsqldb.SortAndSlice.hasOrder
JavaScript XHR P nons an -~ o N
Threads v 9

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation level
selector also contains a "JEE/Spring components" mode. If your application uses JEE or Spring,
you can use this mode to see only JEE and Spring components on a class level. Splitting nodes
like URLs are retained in all aggregation levels.

Thread status: 0 Thread selection: Agagregation level:
I CPU Views BN Runnable - 88 Al thread groups hd Packages
— m— 76,1% - 1,377 ms - 6 inv. org.hsgldb.server @ Methods
) 57,89 - 1,138 ms - 550 inv. org.hsqldb O Classes

Hot Spots B 8.9% - 160 ms - 328,236 inv. org.hsqldb.lib

12.7% - 48,911 ps - 44,633 inv. org.hsgldb.map \ JEE/Spring
Call Graph D o03%- 5,008 ps - 14,558 inv. java.lang -

0.0% - 758 ps - 4,088 inv. org.hsqldh
Qutlier Detection D 01%- 2701 ps - 7,892 inv, java.util
D 02%- 4,103 ps - 9,307 inv. java.lang

Complexity Analysis ™ 0.0%- 383 ps - 2429 inv. org.hsqldb

D 0.0%-511us- 016 inv., java.lang.reflect

Call Tracer D 0.0%-19% ps - 438 inv. java.util.concurrent.locks
X 15.9% - 106 ms - 14,307 inv. org.hsqldb.persist
JavaSeript XHR 13,6% - 64,488 pis - 48,292 inv. org.hsqldb.lib
— D 1.0%- 17,515 ps - 48,280 inv. java.util.concurrent.locks
Threads 0.3% - 5,085 ps - 24,140 inv. org.hsgldb.map

Call tree filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist of
framework classes that you don't care about and your own classes will be deeply buried. Calls
into libraries will show their internal structure, possibly with hundreds of levels of method calls
that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes are
recorded. As a positive side-effect, less data has to be collected, and fewer classes have to be
instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from commonly
used frameworks and libraries.

53

@ Session Settings X

X Filters define which classes are recorded for CPU profiling. (7]
Application Settings

E= Call Tree Recording
T Call Tree Filters

Define Filters

Q All methods of profiled packages are shown in the call tree, Start the filter list with this type to
profile selected packages only.
The first call from a profiled class into @ compact class is shown in the call tree, but further
calls inte compact classes are not measured separately.

@ lgnored packages or classes are not profiled at all.

Type Class or Package =
™= [Default excludes) x
Comp... SProxy

Ignored methods
Comp... Sjava. O

| Trigger Settings Comp... Sjavax.
Comp... AOPContainerProxy$
; Databacer Comp... COM.cloudscape.
Comp... COM.objectspace,
Comp... COM.rsa.
@ HTTP, RPC & JEE Comp... EDU.oswego. H
Comp... GregorSamsa
° JVM & Custom Probes Comp.. _
Comp... allairejrun
@-‘ Advanced Settings Note: It is recommended to select the profiled packages instead of profiling everything except a list of

packages.

Show Filter Tree

General Settings Copy Settings From

Of course this list is incomplete so it's much better that you delete it and define the packages of
interest yourself. In fact, the combination of instrumentation [p. 65] and the default filters is so
undesirable that JProfiler suggests changing it in the session startup dialog.

@ Session Startup X

Settings
Call tree recording: Instrumentation, 1 exceptional method Edit

o For low-overhead CPU profiling, switch to sampling.

Call tree filters: 1 filter rule for method call recording Edit
1. Fhe configured exclusive filters may be too broad. In that case, the overhead of
nstrumentation may be very high, and CPU times will be distorted. Please define
rofiled packages or switch to sampling.
Trigger settings: No active triggers Edit
Database probe settings: 4 enabled probes Edit
HTTP, RPC & JEE probe settings: | 7 enabled probes Edit
VM & custom probe settings: 5 enabled probes Edit
Startup And Exit
Initial recording profile: JDBC and JNDI hd Configure
VM exit action: Let the JVM exit and disconnect > More~
Perfermance
Overhead:

The overhead is composed of the selected profiling settings and the selected recording profile.

The filter expressions are compared against the fully qualified class name, so com nycor p.
matches classes in all nested packages, like com nycor p. nyapp. Appl i cati on. There are three
types of filters, called "profiled", "compact" and "ignored". All methods in "profiled" classes are
measured. This is what you need for your own code.

54

In a class that is contained by a "compact" filter, only the first call into that class is measured,
but no further internal calls are shown. "Compact" is what you want for libraries, including the
JRE. For example, when calling hashMap. put (a, b) you probably want to see HashMap. put ()
in the call tree, but not more than that - its inner workings should be treated as opaque unless
you are the developer of the map implementation.

Finally, "ignored" methods are not profiled at all. They may be undesirable to instrument due to
overhead considerations, or they may simply be distracting in the call tree, such as internal
Groovy methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before you
start the session, the package browser can only show you packages in the configured class path
which often does not cover all the classes that are actually loaded. At runtime, the package
browser will show you all loaded classes.

@ Select Filters >

Packages of loaded classes that can be instrumented:

com (122 classes)

javax (224 classes)

jdbe (17 classes)

jdk (4 classes)

org (719 classes)

apache (23 classes)
Jjuli (4 classes)
tomcat (19 classes)
jdbc (19 classes)

v B pool (19 classes)
hsgldb (696 classes)
sun (694 classes)

Filter type: o Profiled Compact Ignored

You have selected a total of 19 classes

The configured list of filters is evaluated from top to bottom for each class. At each stage, the
current filter type may change if there is a match. It's important what kind of filter starts off the
list of filters. If you start with a "profiled" filter, the initial filter type of a class is "compact", meaning
that only explicit matches are profiled.

a.A ab.B ab.cC d.D

& profiled
compact

\/ —> match

Result: @

If you start it with a "compact" filter, the initial filter type of a class is "profiled". In this case, all
classes are profiled except for explicitly excluded classes.

55

a.A a.b.B ab.cC d.D
------ » Default: @ V) V) V)

@ ' a.* —> >

@D\ @ abx —9—9

Qv abcr } > @ profiled

: : compact

''''''''''''''''''''''''''''''' Y v y v tch
Result & & ~7 matc

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are displayed
on the call tree nodes. There are two times that are interesting for any node, the total time and
the self time. The self-time is the total time of the node minus the total time in the nested nodes.

Usually, the self-time is small, except for compact-filtered classes. Most often, a compact-filtered
class is a leaf node and the total time is equal to the self-time because there are no child nodes.
Sometimes, a compact-filtered class will invoke a profiled class, for example, via a callback or
because it's the entry point of the call tree, like the r un method of the current thread. In that
case, some unprofiled methods have consumed time, but are not shown in the call tree. That
time bubbles up to the first available ancestor node in the call tree and contributes to the self-time
of the compact-filtered class.

actual call sequence filtered call sequence

[Q A: self time 1 ms J

[B: self time 2 ms J

_________________ S v
' X:selftime3ms | [B: self time 6 ms J
R A .
: Y:selftime1ms |
. > elme o & profiled
compact

[Q C: self time 3 ms J:

The percentage bar in the call tree shows the total time, but the self-time portion is shown with
a different color. Methods are shown without their signatures unless two methods on the same
level are overloaded. There are various ways to customize the display of the call tree nodes in

56

the view settings dialog. For example, you may want to show self-times or average times as text,
always show method signatures or change the used time scale. Also, the percentage calculation
can be based on the parent time instead of the time for the entire call tree.

@ Call Tree View Settings -

Node Description
Show percentage bar (7]
Show time
Show self time
Show invocation count
Show average times in brackets (7]
Always show fully qualified names €
Always show signature (7]
Shorten packages (7]

Time Scale

Q Automatic 0 Mixed units 5 ms us

Display Threshold

Hide calls with less than 0.0 % 0

Percentage Calculation

Relative &) OAbso\ute (7]

Thread status

At the top of the call tree there are several view parameters that change the type and scope of
the displayed profiling data. By default, all threads are cumulated. JProfiler maintains CPU data
on a per-thread basis, and you can show single threads or thread groups.

Thread status: 0 Thread selection: Aggregation level:

I CPU Views BB Runnable + | 88 All thread groups @ Methods ~
(0 m—5.0% * - All thread groups

L2l T m 2409353, (08 HSOLDB Connections @2b5356dd
0/ i ¥

Hot Spots Om249%-3 H50LDE Canne(t!on @2089d7b9

Omm249% HSOLDE Connection @2c70bb31

Call Graph Dm17. HSQLDE Connection @7bf14b3d

. @' HSOLDE Connection @d7achle ent

QuikegPeicciin " HSOLDA Connection @dB402ef

atement.execute

p % main L,

Comnlexite Analusis

At all times, each thread has an associated thread status. If the thread is ready to process bytecode
instructions or is currently executing them on a CPU core, the thread status is called "Runnable".
That thread state is of interest when looking for performance bottlenecks, so it is selected by
default.

Alternatively, a thread may be waiting on a monitor, for example, by calling Obj ect . wai t () or
Thr ead. sl eep() in which case the thread state is called "Waiting". A thread that is blocked
while trying to acquire a monitor, such as at the boundary of a synchr oni zed code block is in
the "Blocking" state.

Finally, JProfiler adds a synthetic "Net I/0" state that keeps track of the times when a thread is
waiting for network data. This is important for analyzing servers and database drivers, because
that time can be relevant for performance analysis, such as for investigating slow SQL queries.

57

Thread status: 0 Thread selection: Aggregation level:
I CPU Views == Runnable 88 Al thread groups v | | @ Methods ~

0 Al states - 1,063 ms - 5 inv. org.hsqldb.server.ServerConnection.run

ms - 3 inv. java.util.concurrent. ThreadP oolExecutorS\Worker.run
Hot Spots =1 Waiting 353 ms - 5 inv. jdbcJdbeTestWorker.call
- 353 ms - 5 inv. jdbc.dbcTestWorker. call

Call Tree

mm Blocked S
Call Graph ; 7.1% - 242 ms - 25 inv, jdbcJdbcTestWorker.testStatementsPath1
=3 Netl/0 - 18.8% - 138 ms - 24 inv. jdbc JdbcTestWorker.testPreparedStatement
Outlier Detection ml 5.6% - 79,082 us - 24 inv. java.sql.PreparedStatement.execute
(@15.6% - 79,048 us - 24 inv. org.hsqldb jdbec JDBCPreparedStatement.execute
Comnlexite Analusic P17 79 - 21 28R 11c - 77 inv iava <nl Cannertinn nrenareStatemeant

If you are interested in wall-clock times, you have to select the thread status "All states" and also
select a single thread. Only then can you compare times with durations that you have calculated
with calls to System current Ti meM | | i s() in your code.

If you want to shift selected methods to a different thread status, you can do so with a method
trigger and an "Override thread status" trigger action, or by using the Thr eadSt at us class in
the embedded [p. 164] or injected [p. 159] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option that
is activated by invoking View->Find from the menu or by directly starting to type into the call tree.
Matches will be highlighted and search options are available after pressing PageDown. With the
Ar r owUp and Ar r owDown keys you can cycle through the different matches.

” hraad ctatiice B Thread calartinn: Aggregation level:
. Telemetries Search for: JTW -

v Method h
Match case UsECameIHumps (7] o ods

W UUe - 3 {5 - 23 . UTG. SOOIy, SCa R e L S el el e dleu CIaminii g
-‘:’ Live Memory @ 0.0% -2 ps - 25 inv. org.hsqldb.lib.HsqlArrayList.get
. @ 0.0% - 2 us - 25 inv. org.hsqldb.result.Result. getGeneratedResult Type
Heap Walk
h =L 11,567 ps - 14 inv. org.hsgldb.Session.executeCompiledBatchStatement
@ 0.2%- 1,139 ps - 144 inv. org.hsgldb.Session.performPostExecute

% - 54,830 ps - 60 inv. org.hsqldb.Session.executeCompiledStatement
% - 157 us -
I CPU Views @ 0.0%-157 us- 45 inv. org.hsgldb.result.Result.newPrepareResponse

18,665 ps - 45 inv. org.hsqldb.5tatementManager.compile
@ 0.0%- 72 ps - 144 inv. org.hsqldb.lib java)avaSystem.gc
(@ 0.0% - 62 ps - 15 inv. org.hsqldb.SessionData setResultSetProperties

Call Tree @ 0.0%-10ps - 75 inv. org.hsqldb.Statement. getType
@ 0.0% - 4 us - 60 inv. org.hsqldb.result.Result.getUpdateCount
Hot Spots (@1 10.2% - 53,782 ps - 144 inv. org.hsgldb.result.Resultwrite

% - 5,006 ps - 144 inv. org.hsgldb.result.Result.newResult
% - 407 ps - 144 inv. org.hsqldb.result.Result.readlobResults

1% - 392 ps - 144 inv. org.hsgldb.rowic RewlnputBinary.resetRow
% - 137 us - 144 inv. org.hsgldb.rowio.RewOutputBinary.reset
% - 90 ps - 144 inv. org.hsqldb.server. Server printRequest

6 - 18 ps - 14 inv. org.hsqldb.result.Result.getType

Call Graph
Outlier Detection

Complexity Analysis

Call Tracer 168 ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
JavaScript XHR 32.0% - 169 ms - 5 inv. jdbc. orker.call
—
Threads ~ @

Another way to search for methods, classes or packages is to use the view filter at the bottom
of the call tree. Here you can enter a comma-separated list of filter expressions. Filter expressions
that start with a "-" are like ignored filters. Expressions that start with a "!" are like compact filters.
All other expressions are like profiled filters. Just like for the filter settings, the initial filter type
determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options. By
default, the matching mode is "Contains", but "Starts with" may be more appropriate when
searching for particular packages.

58

. Thread status: 0 Thread selection: Aggregation level:
Telemetri
lemetries B Runnable 88 Allthread groups v @ Methods ~

) — 100,05 - 280 ms - 5 imv. java.util.concurrent. ThreadP oolExecutorSWorker.run
,':!, Live Memaory (G m—100,0% - 280 ms - 5 inv. jdbe.JdbcTestWarker.call
() —100.0% - 280 ms - 5 inv. jobe.JdbeTestWorker.call
() e 70.3% - 197 ms - 19 inv. jdbc.JdbcTestWorker testStatementsPath1
b Heap Walker (D) m—_44,5% - 125 ms - 15 inv. jdbc.dbeTestWorker.testPreparedStatement
0 B 27.6% - 77,530 ps - 15 inv. java.sql.PreparedStatement.execute
ﬁ JDBC calls Show in probe call tree
I CPU Views " 10.0% - 27,045 ps - 45 inv, java.sql.Connection.prepareStatement
0 14.1% - 11,546 ps - 30 inv. java.sql.PreparedStatement.executeQuery
/O JDBC calls Show in probe call tree
Call Tree D 1.4%- 3,870 ps- 13 I PreparedStatement.executeBatch
A% - 3,879 us inv. java.sql PreparedStatement.executeBatc
Hot Spots ¥ IDBC calls Show in probe call tree
D 1.2%-3260us- 15 inv. java.sql PreparedStatement.executeUpdate
Call Graph pJDBC calls Show in probe call tree
O 02%-524ps-15 inv. java.sql.PreparedStatement.addBatch
Qutlier Detection D 0.1% - 305 ps - 90 inv. java.sql.PreparedStatement.setString
Q)™ 25.7% - 72,224 ps - 19 inw., jdbec)dbeTestWorker.testStatement
Complexity Analysis D™ 23.1%- 64,833 ps - 25 inv. java sql.Statement.executeCuery
,O JDBC calls Show in probe call tree

Call Tracer) 0.1%- 191 s - 14 inv. java.sgl.Connection.createStatement
0.0% - 49 ps - 15 inv. java.sql.5tatement.close
JavaScript XHR () ™= 32,3% - 79,518 us - 15 inv. jdbc.JdbcTestWorker.testStatementsPath2
= Threads I~ -org.hsqldb hd IO
Flame graphs

Another way to view the call tree is as a flame graph. You can show the entire call tree or a portion
of it as a flame graph by invoking the associated call tree analysis [p. 186].

£ R T 6% L =T 060 B O)
Stant Stop St=rt Add View Show Stop

Run GC Expart Help

ecordings Recordings Tracking Bookmark Settings Legend cpu Back Fomard | o h R

| Show Flame Graph Cirl-Alt+F |
Thread status: 0 Thread selection: C C

Ctrl+Alt+L plevek
B Runnable v | | @8 Allthread groups C G 1ds v
() — 76,7% - 1,439 ms - 5 inv. org.hsqldb.server.ServerConnect e o AR
D™ 23.9%-451ms-5 inv. java.util.concurrent. ThreadPoolExecuto Inline Async Executions Ctrl+Alt+E
@ 0.0% - 414 ps - 1 inv. org.hsqldb.server.ServerSServerThread.run
@ 0.0%-270 us - 1inv. org.hsqldb.lib.HsqlTimerSTaskRunner.run
@

A flame graph shows the entire content of a call tree in one image. Calls originate at the bottom
of the flame graph and propagate towards the top. The children of each node are arranged in
the row directly above it. Child nodes are sorted alphabetically and are centered on their parent
node. Due to the self-time that is spent in each node, the "flames" get progressively more narrow
toward the top. More information about nodes is displayed in the tool tip where you can mark
text to copy it to the clipboard.

59

” Telernetries Showing 7,792 nodes in 44 rows at 00:25 @) D Reload analysis x & &

Thread status: Thread selection: Aggregation level:
'i:l' Live Memory == Runnable 88 Al thread groups @ Methods
|
’ |
"ﬁ Heap Walker | |
LT ITT R | |
_ N | | EX
CPU Views 10 W | o.hsqldb.ExpressionLogical.get!
1110 B B \
4 Call Tree I I E | ‘
| T |
Flame Graph E |
RlESpo org.hsqldb,jdbe. &
JDBCPreparedStatement
e FetchResult()
Outlier Detection This Invocation Sub-Tree @ All Invocations @
Complexity Analysis Total 18,614 ps 18,614 ps 121 ms I
Call Tracer Self 374 ps I ps 1179 us
Calls 63 68 253
JavaScript XHR @ /Q

If the tool tip near the mouse cursor disturbs your analysis, you can lock it with the button in its
upper right corner and then move it to a convenient location with the gripper at the top of the
tool tip. The same button or a double click on the flame graph close the tool tip.

Flame graphs have a very high information density, so it may be necessary to narrow the displayed
content by focusing on selected nodes and their hierarchy of descendant nodes. While you can
zoom in on areas of interest, you can also set a new root node by double-clicking on it or by
using the context menu. When changing roots multiple times in a row, you can move back again
in the history of roots.

Another way to analyze flame graphs is to add colorizations based on class names, package
names or arbitrary search terms. Colorizations can be added from the context menu and can
be managed in the colorizations dialog. The first matching colorization is used for each node.
Colorizations are persisted across profiling sessions and are used globally for all sessions and
snapshots.

@ Manage Colorizations x
W org.hsgldb.server. [match mode "Starts with”, case sens o
== org.hsgldb.Expression [match mode "Starts with", case sensitive]

s
N

Colorization actions based on the text of the selected node are available in the context

menu of the flame graph.

In addition to colorizations, you can use the quick search functionality to find nodes of interest.
With the cursor keys you can cycle through match results while the tooltip is being displayed for
the currently highlighted match.

Hot spots

If your application is running too slowly, you want to find the methods that take most of the
time. With the call tree, it is sometimes possible to find these methods directly, but often that
does not work because the call tree can be broad with a huge number of leaf nodes.

60

In that case, you need the inverse of the call tree: A list of all methods sorted by their total self
time, cumulated from all different call stacks and with back traces that show how the methods
were called. In a hot spot tree, the leafs are the entry points, like the mai n method of the
application or the r un method of a thread. From the deepest nodes in the hot spot tree, the call
propagates upward to the top-level node.

Thread status: 0 Thread selection: Aggregation level: Hot spot options:

’ Telemetries

B Runnable ~ | | @8 Allthread grou... ¥ | | (@ Methods v | Self times -
X Hot Spot Self Time Average Time Invocations
i’:’l ety %, javasql.Statement.execu... [N 17,548 ps (42 %) 501 ps 35

(= 47 5% - 17,548 ps - 35 hot spot inv. jdbc JdbcTestWorker testStaternent

®- 22,0% - 9,077 ps - 15 hot spot inv, jdbc.)JdbcTestWorker.testStatementsPath2

() ™ 22.0% - 9,077 ps - 15 hot spot inv. jdbe JdbeTestWorker.call

Q) ™ 22.0% - 9,077 s - 15 hot spot inv. jdbc JdbcTestWorker.call
@ W 22,0% - 9,077 ps - 15 hot spet inv. java.util.concurrent ThreadPoolExecuterSWo

()™ 20.5% - 8,471 ps - 20 hot spot inv. jdbc.JdbcTestWorker.testStaternentsPath1

®- 20.5% - 8,471 ps - 20 hot spot inv. jdbc.JdbcTestWorker.call

P J

L
ﬁ Heap Walker

I CPU Views

Call Tree @ M 20.5% - 8,471 ps - 20 hot spot inv, jdbeJdbcTestWorker. call
@ M 20.5% - 8,471 ps - 20 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWo:
Hot Spots 1. java.sql.Connection.prep... I 12,758 ps (30 %) 283 us 45
i java.sql.PreparedStateme.., Il 3,822 ps (9 %) 127 ps 30
Call Graph % java.sql.Connection.creat... I 1,463 ps (3 %) 97 ps 15
1. java.sql.PreparedStateme... | 1,351 s (3 %) S0 ps 15
Outlier Detection i, java.sql.PreparedStateme.., | 1,229 us (2 %) 21 s 15
%, java.sql.PreparedStateme... | 1,006 ps (2 %) T3 ps 15
Complexity Analysis 1. javax.sql.DataSource.get... | 429 ps (1 %) 42 s 10
1. jdbcJdbcTestWorker.test.., | 363 ps (0 %) 24 s 15
Call Tracer i, java.sql PreparedStateme... | 320 ps (0 %) 3us %0
JavaScript XHR 1. java.sql.Connection.close | 276 ps (0 %) 27 s 10

Thread;_ M7

The invocation counts and execution times in the backtraces do not refer to the method nodes,
but rather to the number of times that the top-level hot spot node was called along this path.
This is important to understand: At a cursory glance, you would expect the information on a
node to quantify calls to that node. However, in a hot spot tree, that information shows the
contribution of the node to the top-level node. So you have to read the numbers like this: Along
this inverted call stack, the top-level hot spot was called n times with a total duration of t seconds.

Call Tree Hot spots
Method A Method C
Count5 Count 4
.- X
T S ,
e/
Method C & | | Method A
Count3 ," Count 3
> backtraces
Method B }” | Method B
Count 2 " hot spot »Z____..|.count1
// invocation
) counts
Method C
Count 1

61

By default, the hot spots are calculated from self-time. You can also calculate them from total
time. This is not very useful for analyzing performance bottlenecks, but can be interesting if you
would like to see a list of all methods. The hot spot view only shows a maximum number of
methods to reduce overhead, so a method you are looking for may not be displayed at all. In
that case, use the view filters at the bottom to filter the package or the class. Contrary to the call
tree, the hot spot view filters only filter the top-level nodes. The cutoff in the hot spot view is not
applied globally, but with respect to the displayed classes, so new nodes may appear after
applying a filter.

” Thread status: 0 Thread selection: Aggregation level: Hot spot options:
Telemetri .
lemetries B Runnable - 8 Allthread grou.. ¥ @ Methods Self times

Hot Spot Self Time Time calculation:
|':'| Live Memory i java.sql.Statement.execu... | N 17,542 ps (42 %) o Self times
() w42 5% - 17,548 ps - 35 hot spot inv. jdbc.JdbcTestWorl .

s ()™ 22.0% - 8,077 s - 15 hot spot inv. jdbe.JdbeTestWorl L 1ot times
WG Heep Walker (@ ™ 22.0% - 9,077 s - 15 hot spot inv. jdbc.JdbeTestV| Unprofiled classes:
()™ 22.0% - 9,077 ps - 15 hot spet inv. jdbcJdbcTg
@ W 22.0% - 9,077 ps - 15 hot spot inv. java.util
I CPU Views (@)™ 20,5% - 8,471 s - 20 hot spot inv. jdbcJdbcTestWork | Add te calling profiled class

() ™ 20.5% - 8471 ps - 20 hot spot inv. jdbc)dbc TestWorreran
Call Tree @ = 20.5% - 8,471 ps - 20 hot spot inv, jdbe.)JdbeTestWorker. call

M 20.5% - 8,471 us - 20 hot spot inv, java.util.concurrent. ThreadPoolExecutorSWoi
el b e el Focctinn ean RS 17 750 .- 130 07 ELE. as

© Show separately

Q0 ©9

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no call
tree filters at all, the biggest hot spots will most likely always be methods in the core classes of
the JRE, like string manipulation, I/0 routines or collection operations. Such hot spots would not
be very useful, because you often don't directly control the invocations of these methods and
also have no way of speeding them up.

In order to be useful to you, a hot spot must either be a method in your own classes or a method
in a library class that you call directly. In terms of the call tree filters, your own classes are in
"profiled" filters and the library classes are in "compact" filters.

When solving performance problems, you may want to eliminate the library layer and only look
at your own classes. You can quickly switch to that perspective in the call tree by selecting the
Add to calling profiled class radio button in the hot spot options popup.

Thread status: 0 Thread selection: Agagregation level: Hot spot options:
‘ Telemetries
BN Runnable - & Allthread grow... ¥ @ Methods Self times
Hot Spot Self Time Time calculation:
’i:! Live Memory . o .
] %, java.sql.Statement.execu... [N 17,548 ps (42 %) © Self times (7]
®-4E.5%-1?,543|_|5-35 hot spot inv. jdbc JdbcTestWorl Total ti o
B (@)™ 22.0% - 9,077 us - 15 hot spot inv. jdbe.JdbcTestWorl oralhimes
WG Heop Walker (D) ™ 22.0% - 9,077 us - 15 hot spot inv. jdbeJdbcTestW| Unprofiled classes:
@ W 22.0% - 8,077 us - 15 hot spot inv. jdbc.JdbcTe o Show separately o
i @ B 72,0% - 9,077 ps - 15 hot spot inv. java.util . .
CPU Views () ™ 20.5% - 8,471 ps - 20 hot spot inv. jdbcJdbcTestWork | Add to calling profiled class| @
@‘ 20.3% - 8,471 ps - 20 hot spot inv. jdbc.JdbcTestWorreram
Call Tree @ M 20.5% - 8,471 s - 20 hot spot inv. jdbe.)JdbeTestWorker. call
@ B 20.5% - 8,471 ps - 20 hot spot inv. java.util.concurrent. ThreadPoolExecutorSWor
el B mem mml Cmmn et een T 17 750 - (30 9% 03 A=

Call graph

Both in the call tree as well in the hot spots view each node can occur multiple times, especially
when calls are made recursively. In some situations, you are interested in a method-centric
statistics where each method only occurs once and all incoming and outgoing calls are visible.
Such a view is best displayed as a graph and in JProfiler, it is called the call graph.

62

. Thread status: Thread selection: Aggregation level:
Telemetries
B Runnable a All thread groups @ Methods

’!:!' Live Memaory
]
"ﬁ Heap Walker

I CPU Views _+
AWorker | 171 pe
E stWorker B
Call Tree AsPath2 =
2l self, 25 inv. .
Hot Spots _ Jdbe JdbeTestorker x
/@ testStaterment | E—
Call Graph itWorker " //7 30,408 us, 456 s self, 46 inv.
D tsPatn Al
Qutlier Detection self, 21 inv.
m]
Complexity Analysis d e c
i HE
Call Tracer o
JavaScript XHR

Threads

One drawback of graphs is that their visual density is lower than that of trees. This is why JProfiler
abbreviates package names by default and hides outgoing calls with less than 1% of the total
time by default. As long as the node has an outgoing expansion icon, you can click on it again to
show all calls. In the view settings, you can configure this threshold and turn off package
abbreviation.

€ Call Graph View Settings X

Display Options
Show signature tooltips
Shorten packages (7]
Show average times in brackets ﬂ
Color Information (7]

° Self time Total time

Color Scale Base (7]

© Displayed methods only All methods

Tirme Scale

u Automatic) Mixed units s ms Hs

Display Thresheld

Initially hide cutgoing calls with less than | 1.0 % @

When expanding the call graph, it can get messy very quickly, especially if you backtrack multiple
times. Use the undo functionality to restore previous states of the graph. Just like the call tree,
the call graph offers quick search. By typing into the graph, you can start the search.

The graph and the tree views each have their advantages and disadvantages, so you may
sometimes wish to switch from one view type to another. In interactive sessions, the call tree
and hot spots views show live data and are updated periodically. The call graph, however, is
calculated on request and does not change when you expand nodes. The Show in Call Graph
action in the call tree calculates a new call graph and shows the selected method.

63

Thread status: 0 Thread selection: Aggregation level:
I CPU Views = Runnable v | @8 All thread groups v | | @ Methods ~

Call Tree 0— 100.0% - 80,020 ps - 5 inv. java.util.concurrent. ThreadPoolEx ecutorSWorker.run

rker.call
Hot Spots | =& Show Call Graph [Worker.call
I Show Threads Norker.testStatementsPath2
Call Graph - ‘orker.testStatementsPath1
Add Method Trigger getConnection

Outlier Detecti lose

(e Teecon (@ Add As Exceptional Method hted
Complexity Analysis =< Split Method with a Script

Call Tracer @ Intercept Method With Script Probe

Switching from the graph to the call tree is not possible because the data is usually not comparable
anymore at a later time. However, the call graph offers call tree analyses with its View->Analyze
actions that can show you trees of cumulated outgoing calls and backtraces for each selected
node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features that are
explained in detail in a different chapter [p. 168]. Also, there are other advanced CPU views that
are presented separately [p. 191].

64

Method Call Recording

Recording method calls is one of the most difficult tasks for a profiler, because it operates under
conflicting constraints: Results should to be accurate, complete and produce such a small overhead
that the conclusions you draw from the measured data do not become incorrect. Unfortunately,
there is no single type of measurement that fulfills all these requirements for all types of
applications. This is why JProfiler requires you to make a decision on which method to use.

Sampling versus instrumentation

Measuring method calls can be done with two fundamentally different techniques called
"sampling" and "instrumentation", each of which has advantages and drawbacks: With sampling,
the current call stacks of threads are inspected periodically. With instrumentation, the bytecode
of selected classes is modified to trace method entry and exit. Instrumentation measures all
invocations and can produce invocation counts for all methods.

When processing sampling data, the full sampling period (typically 5 ms) is attributed to the
sampled call stack. With a large number of samples, a statistically correct picture emerges. The
advantage of sampling is that it has a very low overhead because it happens infrequently. No
bytecode has to be modified, and the sampling period is much larger than the typical duration
of a method call. The downside is that you cannot determine any method invocation counts.
Additionally, short running methods that are called only a few times might not show up at all.
This does not matter if you are looking for performance bottlenecks, but can be inconvenient if
you are trying to understand the detailed runtime characteristics of your code.

[Method A: +5 ms] [Method A: +5 ms]

! |

[Method B: +5 ms] [Method B: +5 ms]

| |

[Method X: +5 ms] [Method Y: +5 ms]

T T
T T+5ms time

o ?

Instrumentation, on the other hand, can introduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of performance
hot spots because of the inherent overhead of the time measurement, but also because many
methods that would otherwise be inlined by the hot spot compiler must now remain separate
method calls. For method calls that take a longer amount of time, the overhead is insignificant.
If you can find a good set of classes that mainly perform high-level operations, instrumentation
will add a very low overhead and can be preferable to sampling. JProfiler's overhead hotspot
detection can also improve the situation after some runs. Additionally, the invocation count is
often important information that makes it much easier to see what is going on.

65

[Profiling agent]

r A 1 i
falifat Pl ol ot
55 35 53

X:3.5ms Y:4.5ms
calls calls

Method B: 11 ms

A
calls
Method A

T T T T T T =

T T T T T T T T T
12 3 45 6 7 8 9101112131415 timeinms

Full sampling versus async sampling

JProfiler offers two different technical solutions for sampling: "Full sampling" is done with a
separate thread that pauses all threads in the JVM periodically and inspects their stack traces.
However, the JVM only pauses threads at certain "safe points" thereby introducing a bias. If you
have highly multi-threaded CPU bound code, the profiled distribution of hotspots may be skewed.
On the other hand, if code also performs significant I/0, this bias will generally not be a problem.

To help with getting accurate numbers for highly CPU-bound code, JProfiler also offers async
sampling. With async sampling, a profiling signal handler is called on the running threads
themselves. The profiling agent then inspects the native stack and extracts the Java stack frames.
The main benefitis that there is no safe-point bias with this sampling method, and the overhead
for highly multi-threaded CPU-bound applications is lower. However, only the "Running" thread
state can be observed for the CPU views while "Waiting", "Blocking" or "Net I/0" thread states
cannot be measured in this way. Probe data is always collected with bytecode instrumentation,
so you will still get all thread states for JDBC and similar data.

Async sampling suffers from truncated traces where only the end of the call stack is available.
This is why the call tree is often not as useful for async sampling as the hot spots view. Async
sampling is only supported on Linux and macOS.

Starting with Java 17, JProfiler can avoid using a global safe point for sampling on Hotspot JVMs
and operate full sampling with near-zero overhead. Compared to async sampling, it still introduces
some kind of safe point bias for single threads, but no longer the overhead of a global safe point
for all threads in the JVM. Considering the drawbacks of async sampling, using full sampling is
recommended for Java 17+.

66

Full sampling: safe point bias

'4>‘ —>
Thread 1 .

—® - >

Thread 2

Sampling thread

Async sampling:
Thread 1

\
\

Thread 2

T+5ms time

Choosing a method call recording type

Which method call recording type to use for profiling is an important decision and there no right
choice for all circumstances, so you need to make an informed decision. When you create a new
session, the session startup dialog will ask you which method call recording type you want to
use. At any later point in time you can change the method call recording type in the session
settings dialog.

€ Session Settings X
g

Application Settings Methed Call Recording Type

There are important trade-offs to be considered. Check out the in-depth explanaticon in the

1 H
. documentation.

Tg Call Tree Recording
ﬂ Instrumentation 0
Method Call Recording Allfeatures Invocation counts Ideal for /O bound code Careful with CPU bound code
Exceptional Methods Adjust call tree filters
Split Methods Full sampling @
Y Call Tree Filters Low overhead 17+ Ideal for finding CPU hot spots Better accuracy for CPU times

Mot all features

Trigger Settings Sample unmounted virtual threads

Async sampling ©)
Databases

Low overhead Best accuracy for CPU times Mative sampling Only CPU times

HTTP, RPC &L JEE Mot all features Experimental HotSpot-API

O ¢ w

JVM & Custom Probes

J Advanced Settings Common Options For Sampling (7]

£

General Settings Copy Settings From “ Cancel

As a simple guide, consider the following questions that test whether your application falls into
one of two clear categories on opposite sides of the spectrum:

67

+ Is the profiled application 1/0 bound?

This is the case for many web applications that wait on REST service and JDBC database calls
most of the time. In that case, instrumentation will be the best option under the condition
that you carefully select your call tree filters to only include your own code.

+ Is the profiled application heavily multi-threaded and CPU bound?

For example, this could be the case for a compiler, image processing application or a web
server that is running a load test. If you are profiling on Linux or macOS, you should choose
async sampling to get the most accurate CPU times in this case.

Otherwise, "Full sampling" is generally the most suitable option and is suggested as the default
for new sessions.

Native sampling

Because async sampling has access to the native stack, it can also perform native sampling. By
default, native sampling is not enabled because it introduces a lot of nodes into call trees and
shifts the focus of hot spot calculation to native code. If you do have a performance problem in
native code, you can choose async sampling and enable native sampling in the session settings.

@ Session Settings X

— Application Settings Methed Call Recording Type

There are important trade-offs to be considered. Check out the in-depth explanation in the
documentation.

‘E.‘ Call Tree Recording
- Instrumentation 0

Method Call Recording All features Invocation counts Ideal for /O bound code Careful with CPU bound code
Exceptional Methods Adjust call tree filters
Split Methods Full sampling @
T Call Tree Filters Low overhead 17+ Ideal for finding CPU hot spots Better accuracy for CPU times
Mot all features
Trigger Settings
£ Async sampling (2]
; Databases
Low overhead Best accuracy for CPU times Mative sampling Only CPU times
@ HTTP, RPC & JEE Mot all features Experimental HotSpot-API
I Enable sampling of native libraries I (7]
o JVM & Custom Probes Async buffer size: 100 %) % @
@,E Advanced Settings Common Options For Samplinc (7]
Disable all filters for sampling
= = = - la
General Settings Copy Settings From “ Cancel

JProfiler resolves the path of the library that belongs to each native stack frame. On native method
nodes in the call tree, JProfiler shows the file name of the native library in square brackets at the
beginning.

68

Thread status: o Thread selection: Aggregation level:
B Running | @8 Allthread groups v | | @ Methods

) o 03,15 - 3,220 ms java.awt.EventDispatchThread.run
0 W 79.9% - 2,765 ms bezier.BezierAnimSDemao.paint
) w5355 - 1,860 ms sun.javald.SunGraphics2D.drawlmage
(0) ™ 23.8% - 825 ms bezier.BezierAnimSDemo.drawDemo
Dw153%-530ms sun,javad.SunGraphics2Dfill
f’l 5.5% - 190 ms [libdcpr.dylib] Java_sun_dc_pr_PathFiller_writeAlphal
#415.2% - 180 ms [libdcpr.dylib] writeAlpha8
f'l 3.5% - 120 ms [libdcpr.dylib] writeAlphal
A~ 1.7% - 60,000 s [libdepr.dylib] processlumpBuffer

f' 0.9% - 30,000 us [libdcpr.dylib] sendTileToLLFiller
#~ 0.6% - 20,000 ps [libdcpr.dylib] reset
A~ 0.1% - 5,000 ps [libdepr.dylib] deLLFillerS_get
f' 0.1% - 5,000 ps [libdecpr.dylib] doeMutex_unlock
#~ 0.3%- 10,000 ps [libjwmn.dylib] jni_GetByteArrayElements
H132%-10ms [libawt.dylib] Java_sun_java2d_loops_MaskBlit_MaskBlit
f’ 0.6% - 20,000 ps [libdcpr.dylib] Java_sun_dc_pr_PathFiller_setOutputArea
A~ 0.1% - 5,000 ps [libawt.dylib] Java_sun_java2d_loops_Blit_BElit
f' 0.1% - 5,000 ps [libdcpr.dylib] Java_sun_dc_pr_PathFiller_getAlphaBox
f’ 0.1% - 5,000 ps [libdepr.dylib] Java_sun_dc_pr_PathFiller_reset
A~ 0.1%- 5,000 ps [libdepr.dylib] Java_sun_dc_pr_PathFiller_setFillMode
f' 0.1% - 3,000 ps [libpem.dylib] Runtimel:counter_overflow(JavaThread™, int, Method®)
W ga%-200ms sun.javad.SunGraphics2D.draw
o 0.1% - 5,000 ps java.awt.gecm.GeneralPath.<init>
0 1 2.3% - 80,000 ps bezier.BezierAnimSDemo.createGraphics2D
f‘ 2.5% - 85,000 ps [libjvm.dylib] JVM_MonitorWait
#~ 1.7% - 60,000 ps [libawt_lwawt.dylib] Java_sun_lwawt_macesx_CCursorManager_nativeGetCursorPosition
ﬁ 1.4% - 50,000 ps [libjvm.dylib] Unsafe_Park
f 0.9% - 30,000 ps [libjvm.dylib] InterpreterRuntimenfrequency_counter_overflow(lavaThread®, unsigned char)
#~ 0.6% - 20,000 ps [libjvrn.dylib] JVM_Clone
ﬁ 0.4% - 15,000 ps [libjem.dylib] JVM_GetStackAccessControlContext
@ 0.1% - 5,000 ps bezier.BezierAnimSDemo$1.run
#~ 0.1% - 5,000 ps [libawt_wawt.dylib] Java_sun_twawt_macosx_CPlatformComponent_nativeSetBounds
A= 01% - 5000 1 Hihivm dulih] CanstantPanleklass at imnlicanstantPanlHandl=_int Thread®)

Q- - @

With respect to the aggregation level, native libraries act like classes, so in the "classes" aggregation
level all subsequent calls within the same native library will be aggregated into a single node.
The "packages" aggregation level aggregates all subsequent native method calls into a single
node regardless of the native library.

Thread status: 0 Thread selection: Aggregation level:
== Running hd 88 All thread groups v O Classes v

o I 33.1% - 3,220 ms java.awt.EventDispatchThread
() mmm— 70.9% - 2,765 ms bezier.BezierAnim$Demo
1D w7933 - 2745 ms sun.javald.SunGraphics2D
W 57 3% - 1,810 ms libjvm.dylib
425 ms libdcpr.dylib
- 30,000 ps libjwm.dylib
4~ 0.1% - 5,000 ps libsyster_m.dylib
A~ 0.1%- 5,000 ps libsystem_malloc.dylib
71 6.8% - 235 ms libawt.dylib
f’ 0.1% - 5,000 us [generated stubs)]
° 0.4% - 15,000 ps java.awt.Component
o 0.1% - 5,000 ps java.awt.geom.GeneralPath
A1 6.4% - 220 ms libjvm.dylib
A~ 1.9% - 65,000 ps libawt_lwawt.dylib
o 0.1% - 5,000 ps bezier.BezierAnimSDemos1

P onns man .

To eliminate selected native libraries, you can remove a node [p. 177] from that native library and
choose to remove the entire class.

69

Memory Profiling

There are two ways of getting information about objects on the heap. On the one hand, a profiling
agent can track the allocation and the garbage collection of each object. In JProfiler, this is called
"allocation recording". It tells you where objects have been allocated and can also be used to
Create statistics about temporary objects. On the other hand, the profiling interface of the JVM
allows the profiling agent to take a "heap snapshot" in order to inspect all live objects together
with their references. This information is required to understand why objects cannot be garbage
collected.

Both allocation recording and heap snapshots are expensive operations. Allocation recording
has a large impact on the runtime characteristics, because the j ava. | ang. Cbj ect constructor
has to be instrumented and the garbage collector continuously has to report to the profiling
interface. This is why allocations are not recorded by default, and you have to start and stop
recording [p. 26] explicitly. Taking a heap snapshot is a one-time operation. However, it can
pause the JVM for several seconds and the analysis of the acquired data may take a relatively
long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The "Live memory" section presents
data that can be updated periodically whereas the "Heap walker" section shows a static heap
snapshot. Allocation recording is controlled in the "Live memory" section, but the recorded data
is also displayed by the heap walker.

© Session View Profiling Window Help Animated Bezier Curve Demo - JProfiler - a X
- . - 3
| I 1 1 A AL
L @ ' £ 'EB 0] (3 L] J ﬁ ﬂ
Start Save Session Start Sto Start Add o = Take Mark
Cemer ™ Snapenot Seings | Recordings Recowdings Tracking | " °C Bookmark | CP®" Semings Help | crapsnot Hesp
’ Telernetries O No snapshot has been taken.

For a maximum of features:

'i:l' Live Memaory

Press ﬁ to take a JProfiler heap snapshot

.
ﬁ Heap Walker _
« The snapshot is displayed in this frame and saved together with profiling infoermation
from other views

I CPU Views = For live profiling sessions, special features are available

» Integrations with other views require this snapshot type
—

Threads

Press x’ to indicate the starting point of 2 use case

The three most common problems that can be solved with memory profiling are: Finding a
memory leak [p. 209], reducing memory consumption and reducing the creation of temporary
objects. For the first two problems, you will mainly use the heap walker, mostly by looking at
who is holding on to the biggest objects in the JVM and where they were created. For the last
problem you can only rely on the live views that show recorded allocations, because it involves
objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects" view shows you a histogram
of all classes and their instance counts. The data that is shown in this view is not collected with
allocation recording but by performing a mini heap snapshot that only calculates the instance
counts. The larger the heap, the longer it takes to perform this operation, so the update frequency
of the view is automatically lowered according to the measured overhead. When the view is not
active, no data is collected and the view does not generate any overhead. As with most views
that are updated dynamically, a Freeze tool bar button is available to stop updating the displayed
data.

70

@ Session View Profiing Window Help Animated Bezier Curve Demo - JProfiler - a X
- 3 s, + | o Al 3 »
@ H # 8 B & & e
Start Save Session Start Stop Start Add View Freeze Mark
Center P Snapshot Setfings | Recordings Recoidings Trscking | U CC Bookmark | P Setfings Help View = @
” Telernetries Aggregation level: | @ Classes v
MName Instance Count Size
-‘I = byte]] I ;242 (22 %) 3,079 kB
gy LiveMemory java.lang.String I ::.25c (14 %) 678 kB
int[] I 6,931 (3 %) 15,478 kB
All Objects java.lang.Object[] I 5233 (3 %) 350 kB
. jdk.internal.org.objectweb.asm.Sy... I 6,584 (3 %) 368 kB
Recorded Objects java.util HashMap3Node 6513 (3 %) 208 kB
java.lang.StringBuilder I 5322 (3 %) 151 kB
Allocation Call Ti
ocation Lall free Jjava.security. AccessControlContext W 2476 (2 %) 179 kB
Allocation Hot Spots Jjava.awt.geom.AffineTransform Il 4,007 (1 %) 288 kB
java.lang.Class[] W 3644 (1% 97,336 bytes
Class Tracker java.awt.Rectangle | EREENIES] 100 kB
java.util.concurrent.ConcurrentHa... [l 3,036 (1 %) 97,152 bytes
.‘ﬂ Heap Walker java.lang.Class W 2977 (1%) 368 kB
sun javaZd.pipe.Region W 2,666 (1%) 106 kB
Jjava.lang.ref. WeakReference W 243501 %) 77,920 bytes
I CPU Views Jjava.lang.invoke MethodType W 2395(1%) 95,800 bytes
Jjava.lang.Integer N 1,945 (0 %) 31,120 bytes
— java.lang.invoke MemberMame 0 1,506 (0 %) 72,288 bytes
Threads char{] 11.4128(0%) 194 kB
e imnam il LarbahAaim B 1207 mon T NEE bk
Total from 1,713 rows: 201,285 (100 %) 25,165 kB
r? Monitors & Locks - o
@ 0active recordings € Auto-update2 s VM #1 00:05 @ Profiling

The "Recorded objects" view, on the other hand, only shows the instance counts for objects that
have been allocated after you have started allocation recording. When you stop allocation
recording, no new allocations are added, but garbage collection continues to be tracked. In this
way, you can see what objects remain on the heap for a certain use case. Note that objects may
not be garbage collected for a long time. With the Run GC tool bar button you can speed up this
process.

When looking for a memory leak, you often want to compare instance counts over time. To do
that for all classes, you can use the differencing functionality of the view. With the Mark Current
toolbar button, a Difference column is inserted and the histogram of the instance counts shows
the baseline values at the time of the marking in green color.

71

@ Session View Profiing Window Help Animated Bezier Curve Demo - JProfiler - a X
= P v | -
@ H # 8 R Cc A A e
Start stop save Session start stet anae | hod Eapore VW Help Freeze Mark
Center Snapshot Settings Recordings gs Tracking Bookmark Settings View Heaj e Curen
. Telernetries Aggregation level: | @ Classes v
MName Instance Count Size
: byte[] I 13,333 (12 %) +330 (+4.0 %) 718 kB
-’:’. Live Memory java.lang.String I 12,722 (11 %) +32 (+0.0 %) 306 kB
java.utilHashMapSNode NI ©,539 (6 %) +3,397 (+96.0 %) 222 kB
All Objects java.security. AccessContr... I 5,521 (5 %) +35,333 (+2837.0 %) 220 kB
java.awt.geom. AffineTran... I 4,935 (4 %) +4,855 (+3735.0 %) 358 kB
Recorded Objects java.awt.Rectangle . 3905 (3 %) +3,882 (+3769.0 %) 127 kB
java.lang.Object(] I 5065 (3 %) +970 (+33.0 %) 220 kB
Allocation Call Tree sunjava2d.pipefegion I 3,474 (3 %) +3,396 (+4354.0 %) 138 kB
Allocation Hot Spots int[] | EEIEES] +2,469 (+294.0 %) 3,036 kB
java.lang.Class I 2065 (2 %) 0(x0%) 366 kB
Class Tracker java.util.concurrent.Cone... [l 2,820 (2 %) 0(£0%) 90,240 bytes
java.lang.Integer I 2238 (2 %) +1,458 (+176.0 %) 36,608 bytes
b Heap Walker java.lang.ref. WeakReferen... Il 1,628 (1 %) +1,456 (+847.0 %) 52,006 bytes
sun java2d.SunGraphics2D [l 1,488 (1 %) +1,456 (+4550.0 %) 300 kB
java.util. HashMap W 1,465 (1 %) +972 (+197.0 %) 70,320 bytes
I CPU Views Jjava.util. ArrayList W2r0%) +970 (+322.0 %) 30,504 bytes
doublel] W 1,050 (0 %) +972 (+1246.0 %) 203 kB
— Jjava.security.ProtectionDo... W 1,024 0%) +968 (+1729.0 %) 24,576 bytes
Threads java.awt.EventQueuesd W9z 0% +070 (+4409.0 %) 23,808 bytes
e imnam ik mmomind lesomentbice B 00T 000 0RO 7L ANII NOSY RD ADD huber
Total from 1,345 rows: 109,187 (100 %) +46,392 (+74.0 %) 8,000 kB
r? Monitors & Locks - o
@ 0active recordings € Auto-update2 s VM #1 00:15 @ Profiling

’ Telemetries
’!:I' Live Memaory

All Objects
Recorded Objects
Allocation Call Tree
Allocation Hot Spots

Class Tracker

b Heap Walker
I CPU Views

Threads

Menitors & Locks

n
1

Objects: All objects
Show: @ jeva.awt.Recta

A

ngle

0:10 0:20

0:30

For selected classes, you can also show a time-resolved graph with the Add Selection to Class
Tracker action from the context menu.

&

-

0:40

20,000

10,000

B Class java.awt.Rectangl

punifi

e 11,529

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an object is
allocated. It does not use the exact call stack, for example, from the stack-walking API, because
that would be prohibitively expensive. Instead, the same mechanism is used that is configured
for CPU profiling. This means that the call stack is filtered according to the call tree filters [p. 52]
and that the actual allocation spot can be in a method that is not present in the call stack, because
it is from an ignored or compact-filtered class. However, these changes are intuitively easy to
understand: A compact-filtered method is responsible for all allocations that are made in further
calls to compact-filtered classes.

72

If you use sampling, the allocation spots become approximate and may be confusing. Unlike for
time measurements, you often have a clear idea of where certain classes can be allocated and
where not. Because sampling paints a statistical rather than an exact picture, you may see
allocation spots that are seemingly impossible, such as j ava. uti | . HashMap. get allocating
one of your own classes. For any kind of analysis where exact numbers and call stacks are
important, it is recommended to use allocation recording together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with allocation
counts and allocated memory rather than invocation counts and time. Unlike for the CPU call
tree, the allocation call tree is not displayed and updated automatically because the calculation
of the tree is more expensive. JProfiler can show you the allocation tree not only for all objects,
but also for a selected class or package. Together with other options, this is configured in the
options dialog that is shown after you ask JProfiler to calculate an allocation tree from the current
data.

@ Allocation Options b

Type of Allecations to be Shown
Allocations cumulated for all classes
© Allocations for a selected class or package

java.awt.Rectangle
Liveness mode: | Live objects hd O

Update Options

Aute-update the allocation views periodically (7]

A useful property of the CPU call tree is that you can follow the cumulated time from top to
bottom because each node contains the time that is spent in the child nodes. By default, the
allocation tree behaves in the same way, meaning that each node contains the allocations that
are made by the child nodes. Even if allocations are only performed by leaf nodes deep down
in the call tree, the numbers propagate up to the top. In this way, you can always see which path
is worth investigating when opening branches of the allocation call tree. "Self-allocations" are
those that are actually performed by a node and not by its descendants. Like in the CPU call tree,
the percentage bar shows them with a different color.

N . 07 1/ .
’ Telemetries Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes Change

Aggregation level: @ Methods hd
":l- Live Memory 0 m— 04,35 - 179 kB - 2,950 alloc. java.awt.EventDispatchThread.run

0- 47.1% - 89,720 bytes - 1,206 alloc. bezier.BezierAnimSDemo.paint

All Objects () W 335% - 73,344 bytes - 923 alloc. bezier.BezierAnimS$Demao.drawDemo
O 3329 - 63,248 bytes - 783 alloc. java.awt.Graphics2D.fill
Recorded Objects W147%- 9008 bytes - 106 alloc. java.awt.geom.GeneralPath, <init>
0.6% - 1,088 bytes - 34 alloc. java.awt.Graphics2D.draw
Allocation Call Tree (@1 7.0% - 13,384 bytes - 215 alloc. bezier BezierAnimSDemo.createGraphics2D
Wr64%-12216 bytes - 142 alloc, java.awt.image Bufferedimage.createGraphics
Allocation Hot Spots @ 1.1% - 2,176 bytes - 34 alloc. java.awt.Graphics.drawimage

(W15.7% - 10,864 bytes - 321 alloc. bezier.BerierAnim$Demo.run
Class Tracker

L
ﬁ Heap Walker

I CPU Views

Threads
n
1 Monitors & Locks ~ @

73

In the allocation call tree, there are often a lot of nodes where no allocations are performed at
all, especially if you show allocations for a selected class. These nodes are only there to show
you the call stack leading to the node where the actual allocation has taken place. Such nodes
are called "bridge" nodes in JProfiler and are shown with a gray icon as you can see in the screen
shot above. In some cases, the cumulation of allocations can get in the way and you only want
to see the actual allocation spots. The view settings dialog of the allocation tree offers an option
to show uncumulated numbers for that purpose. If activated, bridge nodes will always show zero
allocations and have no percentage bar.

N . 07 1/ .
” Telemetries Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes Change

Aggregation level: (@ Methods v
":l' Live Memaory ®- 47.2% - 89,872 bytes - 1,744 alloc. java.awt.EventDispatchThread.run

@ 04%-816 bytes - 34 alloc, bezier.BezierAnim$Demo.paint

) 0.0% - O bytes - 0 alloc. bezier.BezierAnim$Demo.drawDemo
All Objects 1) 33.2% - 63,248 bytes - 783 alloc. java.awt. Graphics2D fill

W1473%-9008 bytes - 106 alloc. java.awt.geom.GeneralPath, <init>

@ 0.6% - 1,088 bytes - 34 alloc. java.awt.Graphics2D.draw
@ 0.6%-1,168 bytes - 73 alloc. bezier.BezierAnimSDemo.createGraphics2D

Wr64a%-12216 bytes - 142 alloc, java.awt.image Bufferedimage.createGraphics
Allocation Hot Spots) 1.1% - 2,176 bytes - 34 alloc. java.awt.Graphics.drawlmage

(W 0.0% - 0 bytes - 0 alloc, bezier.BezierAnimSDema.run

Recorded Objects

Allocation Call Tree

Class Tracker
’
'ﬁ Heap Walker

I CPU Views

Threads

Monitors & Locks - D

n
1

The allocation hot spots view is populated together with the allocation call tree and allows you
to directly focus on the methods that are responsible for creating the selected classes. Like the
recorded objects view, the allocation hot spots view supports marking the current state and
observing the differences over time. A difference column is added to the view that shows how
much the hot spots have changed since the time when the Mark Current Values action was invoked.
Because the allocation views are not updated periodically by default, you have to click on the
Calculate tool bar button to get a new data set that is then compared to the baseline values.
Auto-update is available in the options dialog but not recommended for large heap sizes.

’ Telernetries Recorded allocations: | Live objects at 00:32, 1/10 allocations, All classes Change
Aggregation level: @ Methods ¥ Hot spot options: | Self allocated memory A
’i:!' Live Memaory Hot Spot Self Allocated Memory Allocations Difference
i, java.awt.EventDispatchThread.run [INNMBEI 171 kB (46 %) 3,366 +1,622 (+9...
All Objects & java.awt.Graphics2D fill I 126 kB (34 %) 1,518 +735 (+94....
i, java.awtimage.Bufferedimage.cr.. Il 23,432 bytes (6 %) 272 +130 (+%2...
Recorded Objects %, java.awt.geom.GeneralPath.<init> Wl 16,624 bytes (4 %) 205 +99 (+93.0 ...
1. java.awtEventQueusinvokelater [9,904 bytes (2 %) 273 +134 (+95...
4 Allocation Call Tree i, bezier.Bezierinim$Demo.schedu.. | 9,832 bytes (2 %) 273 +129 (+90....
. %, java.awt.Graphics.drawlmage | 4,160 bytes (1 %) 63 +31(+91.0 ...
Allocation Classes L. bezierBezierAnimSDemo.createG...| 2,240 bytes (0 %) 140 +67 (+92.0 ..
5 . java.awt.Graphics2D.draw | 2,240 bytes (0 %) 70 +36 (+106...
Allocation Hot Spots i bezier BezierAnimSDemo.paint 1,680 bytes (0 %) 70 +36 (+106....
% bezier.BezierAnim&DemoST.<init= 1,120 bytes (0 %) 70 +34 (+94.0 ...
Class Tracker
o
ﬁ Heap Walker
I CPU Views
Threads
@

74

Allocation recording rate

Recording each and every allocation adds a significant overhead. In many cases, the total numbers
for allocations are not important and relative numbers are sufficient to solve problems. That is
why JProfiler only records every 10th allocation by default. This reduces the overhead to roughly
1/10 compared to recording all allocations. If you would like to record all allocations, or if even
fewer allocations are sufficient for your purpose, you can change the recording rate in the
recorded objects view as well as the parameter dialog of the allocation call tree and hot spot
views.

’ Telernetries Recorded allocations: | Live objects, 1/10 allocations qe
Aggregation level: O Classes v
‘!:l' Live Memaory Mame Instance Count Size
Jjava.awt.geom. AffineTransform I G0 (10 %) 4,320 bytes
All Objects jeva.awt.Rectangle I 0 (8 %) 1,568 bytes
java.util HashMapSNode I, 2 (7 %) 1,344 bytes
Recorded Objects sun.java2d.pipe.Region I 1 (7 %) 1,680 bytes
Jjava.security. AccessControlContext I - (G %) 1,480 bytes
AliocationiEalliee int]] I 1 5 o 2344 butes
. Jjava.lang.Integer @ Allocation Options X
Allocation Hot Spot:
SIS java.lang.ref.WeakReference
Class Tracker sun.javaZd.SunGraphics2D Liveness Mode
java.lang.Object[] - -
. double]] Live objects ~| @
ﬁ pleapiiValkay java.awt.EventQueuesd
Jjava.awt.event.InvocationEvent | Recording Rate
Jjava.awt.geom.Path2D5FloatSCol
I CPU Views java.awt.geom.Point2DSDouble Record all objects (7]
javassecurity.ProtectionDomain| () Record one sample every 10 % allocstions
= java.util. ArrayList
Threads Jia\ra util. HashMap
Total from 38 rows: | “ Cancel
Q Menitors & Locks -~ @

The setting can also be found on the "Advanced Settings->Memory profiling" step of the session
settings dialog where it can be adjusted for offline profiling sessions.

The allocation recording rate influences the VM telemetries for "Recorded objects" and "Recorded
throughput" whose values will be measured at the configured fraction. When comparing
snapshots [p. 133], the allocation rate of the first snapshot will be reported, and other snapshots
will be scaled accordingly, if necessary.

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify the class
or package whose allocations you want to see up-front. This works well if you already focused
on particular classes, but is inconvenient when trying to find allocation hot spots without any
pre-conceptions. One way is to start to look at the "Recorded objects" view and use the actions
in the context menu for switching to the allocation tree or allocation hot spot views for the
selected class or package.

75

’ Telernetries Recorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: O Classes v
‘ Live Memaory Mame Instance Count Size
Jjava.awt.geom. Affi- - "E 200 (10 %) 57,600 bytes
All Objects java.awt.Rectangle Show Selection In Heap Walker 20,608 bytes
sun.javald.pipe.Re Show Allecation Tree for Selection 22,200 bytes
Recorded Object: util.
ccorde e j::: :::jlﬂt;h:::rﬂ Show Allecation Hot Spots for Selection ::;1633 ::::
4 Allocation Call Tree int[] Add Selection To Class Tracker ' 110 kB
. Jjava.lang.Integer 3,936 bytes
Allocation Cl
ocation asses java.lang.ref.Weak show Source F4 7,776 bytes
Allocation Hot Spots sunjava2d.SunGra i Show Bytecode 42,464 bytes
java.awt.geom.Pat - 5,216 bytes
Class Tracker Jjava.util IdentityH3 Mark Current Values 6,520 bytes
java.lang.Object(] Remaove Mark 5,856 bytes
i Heap Walker Jjava.awt.EventQue . 3,840 bytes
Jjava.awt.event.Inv(Change Liveness Mode 4 10,240 bytes
Jjava.util. ArrayList 3,816 bytes
I CPU Views sun.awt.EventCue Sort Classes ¢ 3,816 bytes
double]] p Find Ctrl+F 10,112 bytes
— iava.securitv.Prote) 3.768 bvtes
D Threads Total from 40 roy T, Export View Ctrl+R 423 kB
s View Filf View Settings Ctrl+T ~| 9

Another way is to start with the allocation tree or allocation hot spots for all classes and use the
Show classes action to show the classes for a selected allocation spot or allocation hot spot.

Window Help Animated Bezier Curve Demo - JProfiler - a X
£ T S A L Q@ 9 & o P E
Racorings Racorings Tocang | 0 ok | BT oy | M0 L | ey e | e P T, e
i | Show Classes Cirl+2l+C |
Recorded allocations: Live cbjects at 00:07, 1/10 zllocations, All classes Show Flame Graph Ctrl-Alt+F Change
Collapse Recursions Ctrl+Alt+L

Aggregation level: (@ Methods A

Calculate Cumulated Outgeing Calls Ctrl+ Alt+G
D) mmm— 94.3% - 179 kB - 2,950 allac. java.awt.EventDispatchThread.run Calculate Backtraces To Selected Methed Ctrl+Alt+B
47.1% - 89,720 bytes - 1,206 alloc. bezier.BezierAnim$Demo.paint Inline Async Executions Ctrle AlteE

38.5% - 73,344 bytes - 923 alloc. bezier.BezierAnimSDemo. drawDerr

20.fill

) 1 4.7% - 9,008 bytes - 106 alloc, java.awt.geom.GeneralPath. <init>
 06%-1,088 bytes - 34 alloc. java.awt.Graphics2D.draw
0' 7.0% - 13,384 bytes - 215 alloc, bezier.BezierAnimSDemo.createGraphics2D
Wr64a%-12,216 bytes - 142 alloc. java.awtimage Bufferedimage.createGraphics
D 11%-2176 bytes - 34 alloc. java.awt.Graphics.drawlmage
Ol 5.7% - 10,884 bytes - 321 alloc, bezier.BezierAnimSDemo.run

Filters @

4 @ 1 active recording VM #1 00:16

@ Profiling

The histogram of the allocated classes is shown as a call tree analysis [p. 186]. This action also
works from other call tree analyses.

76

783 instances in 15 classes have been allocated at the

’ Telemetries selected call stack €P Reload analysis X ¢ e
Recorded allocations: Live objects at 00:07, 1/10 allocations, All classes
|':'| ErE Mehony Aggregation level: @ Methods
All Objects Allocation spot: Jjava.awt.Graphics2D.fill — bezier.BezierAnimSDemo.drawDemo — + Show more
Recorded Objects Name Instance Count Size
] java.util HashMapSNode I 212 (27 %) 6,784 bytes
4 Allocation Call Tree Jjava.awt.geom.AffineTransform 0% 5,112 bytes
Allocation ¢l java.awt.geom.Point2D5Double I GG (8 %) 2,208 bytes
ocation Lasses java.awt. GradientPaintContext 274 %) 2,368 bytes
Allocation Hot Spots Jjava.awt.RenderingHints 374 %) 592 bytes
Jjava.awt.geom.Path2DSFloatSCopylterator 37 4% 1,184 bytes
Class Tracker Jjava.awt.geom.Point2DSFloat 37 4% 888 bytes
Jjava.lang.Integer 7% 592 bytes
J Heap Walker java.lang.ref. WeakReference a7 4%) 1,184 bytes
ﬁ java.util. HashMap M 36045 1,728 bytes
sun java2d.loops.GraphicsPrimitiveMgrPrimitiveSpec Il 36 (4 %) 576 bytes
I CPU Views sun.javald.pipe AlphaPaintPipesTileContext Il 364 %) 1,728 bytes
int[] Ml 344 %) 35,632 bytes
java.awt.qeom.Rectangle2DSFloat Ml 344 %) 1.088 bytes
T Threads Total from 15 rows: 783 (100 %) 63,248 bytes
v @

The classes analysis view is static and is not updated when the allocation tree and hot spot views
are recalculated. The Reload Analysis action will first update the allocation tree and then recalculate
the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on garbage
collected objects. This is useful when investigating temporary allocations. Allocating a lot of
temporary objects can produce significant overhead, so reducing the allocation rate often
improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness selector to
either Garbage collected objects or Live and garbage collected objects. The options dialog of the
allocation call tree and allocation hot spot views has an equivalent drop-down.

indow Help Animated Bezier Curve Demo - JProfiler - a X
)) - 3 —
< | = Ny y iR 1 9 '
[B & s :
Start Stop Start Add View Stop Fresze
Run GC Exq Hell
Recordings Recordings Tracking | o Bookmark PO cettings =P | Memory | View Heap Walker| Objects | Current

) Live Objects
T Garbage Collected Objects

Recorded allocations: | Live objects, 1/10 allocations Change
.-S} Live And Garbage Collected Objects
Aggregation level: O Classes hd
Name Instance Count Size
Jjava.awt.geom.AffineTransform I 14 (10 %) 15,408 bytes
Jjava.awt.Rectangle I 71 (2 %) 5,472 bytes
java.util.HashMapSNode I, 149 (7 %) 4,768 bytes
sun.javaZd.pipe.Region I 149 (7 %) 5,960 bytes
Jjava.security.AccessControlContext I 129 (6 %) 5,160 bytes

However, JProfiler does not collect allocation tree information for garbage-collected objects by
default, because the data for live objects only can be maintained with far less overhead. When
switching the liveness selector in the "Allocation Call Tree" or "Allocation Hotspots" view to a
mode that includes garbage collected objects, JProfiler suggests changing the recording type.
This is a change in the profiling settings, so all previously recorded data will be cleared if you
choose to apply the change immediately. If you would like to change this setting in advance, you
can do so in "Advanced Settings" -> "Memory Profiling" in the session settings dialog.

77

@ Session Settings

Application Settings

Call Tree Recording

Call Tree Filters

Trigger Settings

Databases

HTTP, RPC & JEE

JVM & Custom Probes

OO T HA4u

: Advanced Settings

CPU Profiling
Probes & JEE
Memory Profiling
Thread Profiling

Miscellaneous

General Settings

Copy Settings From

X
Allocation Tree Recording Type
Record allocations of: |) Live objects 7]
Live and GCed objects without class resolution 0
Live and GCed objects 7]
Recording options
Recording rate: Record all objects)
© Record one sample every 10 % allocations
Record object allecation times)

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example, the
sizes that are displayed in the recorded objects, allocation tree and allocation hot spot views are
shallow sizes. They just include the memory layout of the class, but not any referenced classes.
To see how heavy objects of a class really are, you often want to know the retained size, meaning
the amount of memory that would be freed if those objects were removed from the heap.

This kind of information is not available in the live memory views, because it requires enumerating
all objects on the heap and performing expensive calculations. That job is handled by the heap
walker. To jump from a point of interest in the live memory views into the heap walker, the Show
in Heap Walker tool bar button can be used. It will take you to the equivalent view in the heap

walker.
Window Help Animated Bezier Curve Demo - IProfiler - a X
P B /O A& 2t g | L@ -
B B T SN 0 & o @
Start Stop Start Run GC Add Export View Hel Stop Unfreeze Show In Live Mark
Recordings Recordings Tracking " - Bookmark PO semings P Memory View | Hespwalker | Objects current
Recorded allocations: | Live objects, 1/10 allocations Change
Aggregation level: © Classes hd
Name Instance Count Size
java.awt.geom AffineTransform 682 (10 %) 49,104 bytes
Jjava.awt.Rectangle I S-S (2 %) 17,440 bytes
sun,javald.pipe.Region I, 72 (7 %) 19,120 bytes
java.util.HashMapSNode I, <77 (7 %) 15,264 bytes
Jjava.security.AccessControlContext I 00 (6 %) 16,360 bytes

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will ask you
whether to use the existing heap snapshot.

78

@ Jprofiler hod

A Heap Dump Has Already Been Taken

‘Where do you want to show the selected objects?

% Show in current heap dump

Selected objects were created after the heap dump was
taken will not be found in the current heap dump.

% Show in new heap dump
If you select this option, the current heap dump will be
discarded.

Selected ohjects that have already been garbage collected
will not be found in the new heap dump.

Cancel

In any case, it is important to understand that the numbers in the live memory views and in the
heap walker will often be very different. Apart from the fact that the heap walker shows a snapshot
at a different pointin time than the live memory views, it also eliminates all unreferenced objects.
Depending on the state of the garbage collector, unreferenced objects can occupy a significant
portion of the heap.

79

The Heap Walker

Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot, because
itis not possible to ask the JVM what the incoming references to an object are. You have to iterate
over the entire heap to answer that question. From that heap snapshot, JProfiler creates an
internal database that is optimized for producing the data required for serving the views in the
heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF/PHD heap
snapshots. JProfiler heap snapshots support all available features in the heap walker. The profiling
agent uses the profiling interface JVMTI to iterate over all references. If the profiled JVM is running
on a different machine, all information is transferred to the local machine and further calculations
are performed there. HPROF/PHD snapshots are created with a built-in mechanism in the JVM
and are written to disk in a standard format that JProfiler can read. HotSpot JVMs can create
HPROF snapshots, and Eclipse OpenJ9 JVMs provide PHD snapshots.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or an
HPROF/PHD heap snapshot should be created. By default, the JProfiler heap snapshot is
recommended. The HPROF/PHD heap snapshot is useful in special situations that are discussed
in another chapter [p. 202].

‘ Telernetries O No snapshot has been taken.
For a maximum of features:
‘l:l Live Memory
]
Press ﬁ to take a JProfiler heap snapshot
a
ﬁ Heap Walker : o i . i
» The snapshot is displayed in this frame and saved together with profiling infermation
from other views
I CPU Views = For live profiling sessions, special features are available
» Integrations with other views require this snapshot type
Threads
Press * to indicate the starting point of a use case
r? Monitors & Locks
= All objects that are currently on the heap will be marked as old
» When you take the next heap snapshot, new and old objects will be listed separately
Datahaes in the header
» You can select new or old objects only, making it easy to track down memory leaks
o HTTP, RPC & JEE
For a minimum of overhead:
@ JVM & Custom Probes
Y
Press g totake an HPROF heap snapshot
Py
ees MBeans
e

= The snapshot is saved separately and displayed in another frame
» Mot all features are available

« Memory and CPU overhead in the profiled VM are lower than for the JProfiler

Selection steps

The heap walker consists of several views that show different aspects of a selected set of objects.
Right after you take the heap snapshot, you are looking at all objects on the heap. Each view has
navigation actions for turning some selected objects into the current object set. The header
area of the heap walker shows information on how many objects are contained in the current
object set.

80

© Classes il Allocations EIZ Biggest Objects K References o Time @ Inspections +

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

© Classes hd Use.. ™ (& Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size

byte[] I 3,132 (21 %) 694 kB

javalang.String I 11,253 (19 %) 285 kB

Initially, you are looking at the "Classes" view which is similar to the "All objects" view in the live
memory section [p. 70]. By selecting a class and invoking Use->Selected Instances, you create a
new object set that only contains instances of that class. In the heap walker, "using" always means
creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead, JProfiler
suggests another view with the "New object set" dialog. You can cancel this dialog to discard the
new object set and return to the previous view. The outgoing references view is suggested, but
you could also choose another view. This is just for the initially displayed view, you can switch
views in the view selector of the heap walker afterward.

@ Mew Object Set X
A new object set has been created. It consists of 4,474 instances of java.util.HashMap$Node.

Please choose the initial view for the object set:

Classes O This view mode of the references view shows trees
of cutgeing references from the single instances in

Allocations | the current object set. You can navigate to other
instances in the reference tree.
Biggest objects EE
o References }i
Qutgoing references h
Time

=4]

Inspections

Do not show this dialeg again

The header area now tells you that there are two selection steps and includes links for calculating
the retained and deep sizes or for using all objects that are retained by the current object set.
The latter would add another selection step and suggest the classes view because there would
likely be multiple classes in that object set.

81

£ 8 T S % L35 0 & #)|0 4|

Start Stop Start Add View Take Mark _ GoTo | Show
Run GC Export Hel Back | Forward
Recordings Recordings Tracking un Bookmark PO ettings =7 Snzpshot Heap Stant | Selection
© Classes Wl Allocations EE Biggest Objects References O Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node

2 selection steps, 143 kB shallow size, ICa\cuIate retained and dEEE sizes II Use retained cb'Ectsl

Outgoing references o Use.. ™ Apply filter .. ¥ Show In Graph L AL
Object Retained Size Shallow Size Allocation Time (himss)
@ java.util HashMapSHode 50 1,483 kB 32 bytes nfa
@ java.util HashMapSMode 1,487 kB 32 bytes nfa
@ java.util HashMapSMode 96,976 bytes 32 bytes nfa
[] Jjava.util HashMapSMede 94,968 bytes 32 bytes nfa
[] Jjava.utilHashMapSHode 50,728 bytes 32 bytes na
W java.util HashMapSMode 5,344 bytes 32 bytes n/a
W java.util HashMapShode (0 1,528 bytes 32 bytes n/a
W jeva.util HashMapSNode (0x4626 1,408 bytes 32 bytes n/a

Selection step 2: Class
java.util.HashMapSNede

4,474 instances of java.util.HashMap&Node

Selection step 1: All ohjects, after full GC, retaining soft references

T B I T T S R

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking on
the hyperlinks will take you back to any selection step. The first data set can also be reached
with the Go To Start button in the tool bar. The back and forward buttons in the tool bar are
useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heap walker contains five views that show different information
for the current object set. The first one of those is the "Classes" view.

The classes view is similar to the "All objects" view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show estimated
retained sizes for classes. This is the amount of memory that would be freed if all instances of
a class were removed from the heap. If you click on the Calculate estimated retained sizes hyperlink,
a new Retained Size column is added. The displayed retained sizes are estimated lower bounds,
calculating the exact numbers would be too slow. If you really need an exact number, select the
class or package of interest and use the Calculate retained and deep sizes hyperlink in the header
of the new object set.

© Classes Wl Allocations EE Biggest Objects # References O Time @ Inspections 3

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

O Classes ~ Use.. ¥ (& Group By Class Loaders ICaI(uIatE estimated retained sizesl
Name Instance Count Size

byte[] I 13,132 (21 %) 694 kB
Jjava.lang.String I 1,283 (19 %) 285 kB
ava.util.HashMa ode L 474 (7 %)

J |.HashMapSHad; I 4474 (7 %) 143 kB
ava.lang.Class %)

iava.lang.Cl I 2,954 (4%) 945 kB
Java.lang.Object] 7o,

java.ang.Object]] I 2224 (4 %) 123 kB

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated j ava. | ang. Ol ass objects, or all retained objects. Double-clicking
is the quickest selection mode and uses the selected instances. If multiple selection modes are
available, as in this case, a Use drop-down menu is shown above the view.

82

When solving class loader-related problems, you often have to group instances by their class
loader. The Inspections tab offers a "Group by class loaders" inspection that is made available
on the classes view, because it is especially important in that context. If you execute that analysis,
a grouping table at the top shows all class loaders. Selecting a class loader filters the data
accordingly in the view below. The grouping table remains in place when you switch to the other
views of the heap walker until you perform another selection step. Then, the class loader selection
becomes part of that selection step.

© Classes Wl Allocations .. Biggest Objects 1 References O Time @ Inspections 3
Ohbject groups:
Priority Class Loader Instance Count Shallow Size
1 Default class loader 62,172 5,762 kB
2 jdk.internal.loader.ClassLoadersS AppClassLoader (0x103f) 25 3,928 bytes

Current object set: 62,172 objects in 1,313 classes.
3 selection steps, 5,762 kB shallow size, Calculate retained and deep sizes Use retained objects

O Classes ~ Use.. ¥ Group By Class Loaders Calculate estimated retained sizes
Name Instance Count Size

byte[] I 13,132 (21 %) 694 kB
Jjava.lang.String I 1,283 (19 %) 285 kB
Jjava.util.HashMapSMode I 474 (7 %) 143 kB
java.lang.Class I 2046 (4 %) 942 kB
javalang.Object]] I 20344 %) 183 kB
java.util.concurrent.ConcurrentHashMapSNode I 2023 4 %) 90,336 bytes
Total from 1,313 rows: 62,172 (100 %) 5,762 kB

v @

Allocation recording views

The information where objects have been allocated can be important when narrowing down
suspects for a memory leak or when trying to reduce memory consumption. For JProfiler heap
snapshots, the "Allocations" view shows the allocation call tree and the allocation hot spots for
those objects where allocations have been recorded. Other objects are grouped in the "unrecorded
objects" node in the allocation call tree. For HPROF/PHD snapshots, this view is not available.

© Classes . Allocations .- Biggest Objects 3 References O Time @ Inspections 3

Current object set: 62,197 objects in 1,320 classes.

1 selection step, 5,766 kB shallow size

Cumulated allocation tree ¥ of @Methnds - | |[@ Use Selected

0— 100.0% - 131 kB - 2,035 alloc, java.awt.EventDispatchThread.run
() e— 05 9% - 131 kB - 2,032 alloc. bezier.BezierAnimSDemo.paint
() m—09,9% - 131 kB - 2,032 alloc. berier.BezierAnimSDemo.drawDemo
76.4% - 100 kB - 1,218 alloc. java.awt.geom.GeneralPath.<init>

,200 bytes - 407 alloc. java.util. Map.put
W1 7.4% - 8,744 bytes - 406 alloc. java.lang.Long.valueOf
W 00%-32 bytes - 1 alloc, java.awt.Graphics2D.fill
(@ 0.0% - 5,634 kB - 60,162 alloc. unrecorded objects

Recorded allocations: Al allocations @

Like in the classes view, you can select multiple nodes and use the Use Selected button at the top
to create a new selection step. In the "Allocation hot spots" view mode, you can also select nodes
in the back traces. This will only select objects in the associated top-level hot spot that have been
allocated on a call stack that ends with the selected back trace.

83

Another piece of information that JProfiler can save when recording allocations is the time when
an object was allocated. The "Time" view in the heap walker shows a histogram of the allocation
times for all recorded instances in the current object set. You can click and drag to select one or
multiple intervals and then create a new object set with the Use Selected button.

@ Classes Ml Allocations EE Biggest Objects K References o Time @ Inspections +

Current object set: 5,495 instances of java.awt.geom.GeneralPath

2 selection steps, 175 kB shallow size, Calculate retained and deep sizes Use retained objects
4,485 new instances (81,6%) since the last heap dump Use new Use old

Use Selected log FOUPCINS SIRE |

Unrecorded objects: 604
Click and drag to select chjects
o

N [R I R T A R R A A S B A R R B N N N A A R R A AN S B A A S S A S AN SRRSO I R AN
: 0:20 0:30 0:40 0:50 1

1000

100 5

| 0:31.8 [Jul 25, 2023 10:47:23 AM] £ 260 ms

Instances: 160

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 44]. All
objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the reference
views. However, allocation time recording is not enabled by default. You can switch it on directly
in the time view or edit the setting in Advanced Settings -> Memory Profiling in the session settings
dialog.

Biggest objects view

The biggest objects view shows a list of the most important objects in in the current object set.
"Biggest" in this context means the objects that would free most memory if they were removed
from the heap. That size is called the retained size. In contrast, the deep size is the total size
of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are retained by
this object. In this way, you can recursively expand the tree of retained objects that would be
garbage collected if one of the ancestors were to be removed. This kind of tree is called a
"dominator tree". The information displayed for each object in this tree is similar to the outgoing
reference view except that only dominating references are displayed.

84

@ Classes Ml Allocations .. Biggest Objects K References o Time @ Inspections +

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Mo grouping v | = Tree A Use.. v Show In Graph w @
Object Retained Size
W sun.awt.AppContext (0x50d7 I 1,545 kB (27 %)
D bezier.BezierAnimSDemo (0xde03 I 62 LB (6 %)

— 351 kB (99.7%) bimg @ sun.awt.image.OffScreenlmage
N 351 kB (99.7%) raster (declared by java.awt.image.Bufferedimage =] sun.awt.image.IntegerinterleavedRaster
N 351 kB (99.6%) data (declared by sun.awt.imagelntegerComponentRaster (=] int[]
é{, Another 3 instances with a total retained size of 264 bytes and a maximum single retained size of 144 bytes
}Q Another 2 instances with a total retained size of 152 bytes and a maximum single retained size of 128 bytes
é% Another 12 instances with a total retained size of 504 bytes and a maximum single retained size of 80 bytes
Iﬁ-i Jjava.awt.EventDispatchThread (0x30d2 I 331kE (5 %)
W bezier.Bezierhnim (0x4e07 I 203 kB (3 %)
W jeva.util.zip.ZipFileSSource (0 128 (1%)
3 sun.swing.CachedPainter (0 Il 97,424 bytes (1 %)
© com.jprofiler.agent.d.a (0x11 W 55,088 bytes (0 %)
[c] sun.security.util.KnownOIDs W 50,330 bytes (0 %)
Iﬁi sun.security.provider.Sun ([B 43,176 bytes (0 %)

@ sunjova2d.loops.GraphicsPrimitiveMgr (0:37 W 33,432 bytes (0%)
Q Jjavalang.invoke MethodType ([xb3 W 32,304 bytes (0 %)
Iﬁ-i Jjava.util.concurrent.ConcurrentHashMap (0x6elc I 34192 bytes (0 %)
W javalang.invoke.lambdaForm (01440 1 33,160 bytes (0 %)
1 sun.awt.ExtendedKeyCodes (D:1e 1 30,336 bytes (0 %)
1 com.jprofiler.agent.triggers. TriggerLog (0x207 1 25,224 bytes (0 %)
) jeva.ioPrintStream (D« 22cf 1 25,112 bytes (0 %)
[] Jjava.io.PrintStream ((x9e73 1 25,112 bytes (0 %)
I.J javalang.ProcessEnvironment (0x2fd I 243552 bytes (0 %)
@ sun.awtWin32FontManager (02605 1 20,016 bytes (0 %)
|:i javalang.Module (0x 2144 1 18,568 bytes (0 %)

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

[GC root]

A 4

[Object A]

dominates directly dominates directly

([ObjectB ObjectB2 |

)

—
dominates indirectly

o3

[Object C]

Object A dominates objects B1 and B2, and it does not have a direct reference to object C. Both
B1 and B2 reference C. Neither B1 nor B2 dominates C, but A does. In this case, B1, B2 and C are
listed as direct children of A in the dominator tree, and C will not be listed a child of B1 and B2.
For B1 and B2, the field names in A by which they are held are displayed. For C, "[transitive
reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what percentage
of the retained size of the top-level object is still retained by the target object. The numbers will
decrease as you drill down further into the tree. In the view settings, you can change the
percentage base to the total heap size.

85

The dominator tree has a built-in cutoff that eliminates all objects that have a retained size that
is lower than 0.5% of the retained size of the parent object. This is to avoid excessively long lists
of small dominated objects that distract from the important objects. If such a cutoff occurs, a
special "cutoff" child node will be shown that notifies you about the number of objects that are
not shown on this level, their total retained size and the maximum retained size of the single
objects.

Instead of showing single objects, the dominator tree can also group biggest objects into classes.
The grouping drop-down at the top of the view contains a checkbox that activates this display
mode. In addition, you can add a class loader grouping at the top level. The class loader grouping
is applied after the biggest objects are calculated and shows who loaded the classes of the biggest
objects. If you want to analyze the biggest objects for one particular class loader instead, you
can use the "Group by class loader" inspection first.

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Mo grouping = Tree A Use.. v Show In Grap = 0
Group by class loader @ DPhject Retained Size
Group by class 7} I 1,545 kB (27 %)
a3 I 62 LB (6 %)
D jeva.awt EventDispatchThread (0x50d2 I kB (5 %)
¥ bezier.Bezieranim (DxdedT) I 203 kB (3 %)
W iava.tilzin FinFileSSnurce (M 7R3 I 117 R 01 %)

The view mode selector above the biggest objects view allows you to switch to a sunburst diagram.
The diagram is composed of a series of concentric segmented rings and shows the entire content
of the dominator tree up to a maximum depth in one single image. References originate in the
innermost ring and propagate towards the outer rim of the circle. This visualization gives you a
flattened perspective with high information density that allows you to discover reference patterns
and see large primitive and object arrays at a glance through their special color coding.

If the current object set is the entire heap, the total circumference of the circle corresponds to
the used heap size. Because the biggest object view only shows objects that retain more than
0.1% of the total heap, this means that a substantial sector will be empty, corresponding to all
objects that are not retained by those biggest objects.

86

@ Classes ‘Ml Allocations .. Biggest Objects K References O Time @ Inspections +

Current object set: 60,357 objects in 1,319 classes.

1 selection step, 5,651 kB shallow size

Mo grouping b Sunburst Diagram

o All objects

Biggest objects:

1,545 kB (27.4%) sun.awt.AppContext

362 kB (6.4%) bezier.BezierAnimiDemo

331 kB (3.9%) java.awt.EventDispatchThread

203 kB (3.6%) bezier.BezierAnim

112 kB (2.0%) java.util.zip ZipFile3Source

G7,424 bytes (1.7%) class sun.swing.CachedPainter
55,088 bytes (1.0%) class com jprofiler.agent.d.a
50,880 bytes (0.9%) class sun.security.util. KnownOIL
48,176 bytes (0.9%) sun.security.provider.5un
38,432 bytes (0.7%) class sun.java2d.loops.Graphics
38,304 bytes (0.73) class java.lang.invoke.MethodTy
34,192 bytes (0.6%) java.util.concurrent.Concurrent!
33,160 bytes (0.6%) java.lang.invoke.LambdaForm
30,336 bytes (0.5%) class sun.awt.ExtendedKeyCode
23,224 bytes (0.4%) class com jprofileragent.trigger
23,112 bytes (0.4%) java.io.PrintStream

25,112 bytes (0.4%) java.io.PrintStream

24,552 bytes (0.4%) class java.lang.ProcessEnvironrm
20,016 bytes (0.4%) sun.awt.Win32FontManager
18,368 bytes (0.3%) java.lang.Module

14,544 bytes (0.3%) class java.nio.charset.Charset

Instances ™ Object arrays ™ Primitive arrays ™ Smaller objects

Clicking on any ring segment sets a new root for the circle, thereby expanding the maximum
depth that you can see in the diagram. Clicking on the hollow center of the diagram restores the
previous root. If a new root has been set, the total circumference of the circle corresponds to
the retained size of the root object. An empty sector represents the self-size of the root object
and additional objects that are not present in the list of biggest retained objects. If the current
object set is not the entire heap, the total circumference of the circle corresponds to the sum of
all displayed biggest objects and no empty sector is shown.

87

@ Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections +

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size
Mo grouping b Sunburst Diagram g

O class java.nio.charset.Charset
14,544 bytes (0% of parent node, 0% of total heap)

Biggest objects:

14,160 bytes (97.4%) static standardProvider o su
Another 3 instances with a total retained size of 64k

7
.
>
=
=
=
E=

S
<\

W
T '
]

Instances ™ Object arrays ™ Primitive arrays Smaller objects

More information about instances and their immediately retained objects is displayed on the
right side of the diagram when you hover over them with the mouse. When the mouse is outside
any ring segment, the list on the right side shows the biggest objects in the innermost ring.
Hovering over that list highlights the corresponding ring segments and clicking on a list item sets

a new root for the diagram. To create a new object set, you can choose from the actions in the
context menu, both on the ring segments as well on the list items.

Reference views

Unlike the previous views, the reference views are only available if you have performed at least
one selection step. For the initial object set these views are not useful, because the incoming

and outgoing reference views show all individual objects and the merged reference views can
only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE. When
opening an object, you can see the primitive data and references to other objects. Any reference
type can be selected as a new object set, and you can select multiple objects at once. Like in the
classes view, you can select retained objects or associated j ava. | ang. d ass objects. If the
selected object is a standard collection, you can also select all contained elements with a single
action. For class loader objects, there is an option to select all loaded instances.

88

@ Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. ¥ Apply filter ... ¥ =2 Show In Graph @ ||

Object Selected Objects Shallow Size Allocation Time (him:s)

¥ key ™ class javax.swing.Repai Instances of Selected java.lang.Class Objects

HANDLE_TOP_LEVEL_PAIN
BUFFER_STRATEGY NOT_ Retained Objects
BUFFER_STRATEGY_SPECIFIED_ON = 1
BUFFER_STRATEGY_SPECIFIED_OFF = 2
BUFFER_STRATEGY_TYPE = 2
volatilelmageBufferEnabled = true
volatileBufferType = 1

Selection step 2: Class
java.util.HashMapSMNode

4 474 instances of java.util.HashMapSNode

Selection step 1: All objects, after full GC, retaining soft references

7 40T mleia it 4 A almmmem

Fields with null references are not shown by default because that information may be distracting
for a memory analysis. If you want to see all fields for debugging purposes, you can change this
behavior in the view settings.

© Heap Walker View Settings X
General Classes Allocations Biggest Objects References Time Graph

Size Scale For Cumulated Views

O Automatic 0 Mixed units MEB kB bytes

Instance Views

Show object IDs
]
Show declaring class if different from actual class (7]

I Show fields with null values in outgoing references wewl (7]

Instance block size: w | @

Common Optiens

Compact representation of incoming references to collections)

Beside the simple selection of displayed instances, the outgoing references view has powerful
filtering capabilities [p. 206]. For live sessions, both outgoing and incoming reference views have
advanced manipulation and display functionality that is discussed in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why an
object is not garbage collected, the Show Paths To GC Root button will find reference chains to
garbage collector roots. The chapter on memory leaks [p. 209] has detailed information on this

important topic.

89

@ Classes Ml Allocations EE Biggest Objects K References o Time @ Inspections +

Current object set: 652 instances of java.awt.geom.GeneralPath
2 selection steps, 20 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =2 Show In Graph @ || @ i Show Paths To GC Reot
Object Retained Size Shallow Size Allocation Time (him:s)
[java.awt.geom.GeneralPath ((x822f) 248 bytes 32 bytes n/a

@ value of java.util. HashMapSNode (0:822d
D element of java.util. HashMapShode[] (.
@ table of java.util.HashMap (022
@ leakMap of bezier.BezierAnim (0x4e37
0 this$0 of bezier.BezierAnimSDemo (0x1293
O,‘l’,java stack of Thread-0 in bezier.BezierAnimSDemo.run()

[] Jjava.awt.geom.GeneralPath 3 243 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes na
) jova.awt.geom.GeneralPath 248 bytes 32 bytes n/a
) jeva.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ jeva.awt.geom.GeneralPath 243 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 243 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 243 bytes 32 bytes nfa
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes na
) jova.awt.geom.GeneralPath 248 bytes 32 bytes n/a
) jeva.awt.geom.GeneralPath 248 bytes 32 bytes nfa
W jeva.awt.geom.GeneralPath 243 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath 243 bytes 32 bytes nfa
i l java.awt.geom.GeneralPath 248 bytes 32 bytes n/a

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you the
merged outgoing and incoming references of all objects in the current object set. By default, the
references are aggregated by classes. If instances of a class are referenced by other instances

of the same class, a @ special node is inserted that shows the original instances plus the instances
from these class-recursive references. This mechanism automatically collapses internal reference
chains in common data structures, such as in a linked list.

You can also choose to show the merged references grouped by field. In that case, each node
is a reference type, such as a particular field of a class or the content of an array. For standard
collections, internal reference chains that would break cumulation are compacted, so you see
reference types like "map value of java.lang.HashMap". Unlike for class aggregation, this
mechanism only works for explicitly supported collections from the standard library of the JRE.

In the "Merged outgoing references" view, the instance counts refer to the referenced objects.
In the "Merged incoming references" view, you see two instance counts on each row. The first
instance count shows how many instances in the current object set are referenced along this
path. The bar icon at the left side of the node visualizes this fraction. The second instance count
after the arrow icon refers to the objects that hold the references to the parent node. When
performing a selection step, you can choose whether you want to select objects from the current
object set that are referenced in the selected way or if you are interested in the objects with the
selected reference - the reference holders.

90

@ Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged incoming references ¥ | Aggregate by class * Use.. v [i]

B 3% - 3,647 instances (09 422 instances of java.util} Referenced Objects
W 77% - 3,457 instances O 420 instances of java.ul Unreferenced Objects
B 1% - 931 instances 0 250 instances of java.util.H

18% - 821 instances ® 1 instance of bezier. Bezie | kb]
M 18% - 821 instances 0 1 instance of bezier.BezierAnim$1
W 13% - 821 instances (3 2 instances of java.ang.Object]]
W 13% - 821 instances (3 1 instance of java.awt.BorderLayout
M 18% - 821 instances 0 1 instance of javax.swing.JRootPane
W 18% - 821 instances (3 3 instances of java.util. Hashtable$SEntry
W 13% - 821 instances (3 1 instance of sun.awt.windows.WPanelPeer
M 18% - 821 instances 0 1 instance of sun.awt.image.OffScreenlmage
W 13% - 821 instances (3 1 instance of java.awt.LightweightDispatcher
W 18% - 821 instances (3 1 instance of bezier.BezierAnim$Demo

1 6% - 305 instances 0 33 instances of java.Jang.Module

1 5% - 266 instances (Y 21 instances of java.util. HashMap$KeySet

1 4% - 214 instances (3 40 instances of java.utilLHashMap$EntrySet

I 2% - 125 instances O 1instance of sun.awt.resources.awt

| 2% - 123 instances (Y class sun.font.TrueTypeFont

|_2% = 102 instances L9 1instance of sun awt windows WToallkit

With the "Merged dominating references" view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage collected.
The dominating reference tree can be interpreted as the merged inverse of the dominator tree
in the biggest objects view, aggregated for classes. The reference arrows may not express a
direct reference between the two classes, but there may be other classes in between that hold
non-dominating references. In the case of multiple garbage collector roots, no dominating
references may exist for some or all objects in the current object set.

© Classes Wl Allocations .- Biggest Objects 3 References O Time @ Inspections 3

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references ¥ || Objects to GC roots Use.. w a
m— 1% 3,647 instances @) ML LA LI ashMap$ Node]]
B 77% - 3,457 instances| GC roots to objects tiLHashMap

B 1% - 951 instances (@Y 250 instances of java.util.HashSet

W 18% - 821 instances O 1instance of bezier.BezierAnim

1 6% - 305 instances (@Y 53 instances of java.lang.Module

I 2% - 125 instances 0 1 instance of sun.awt.resources.awt
| 2% - 123 instances Od‘, GC root

| 2% - 123 instances () class sun.font.TrueTypeFont

I 2% - 102 instances 0 1 instance of sun.awt.windows.WToolkit

| 2% - 100 instances 0 1 instance of sun.awt.windows.WDesktopProperties

| 2% - 96 instances (Y class sun.awt.ExtendedKeyCodes

| 1% - 89 instances 0 1 instance of com.sun.swing.internal.plaf.basic.resources.basic

| 1% - 63 instances 0 37 instances of java.security.Provider§Service

I 1% - 59 instances @ 5 instances of java.util.Collections$UnmodifiableMap

I 1% - 51 instances O 1 instance of java.lang.ModuleLayer

| 1% - 49 instances ¥ class jdicinternal.misc.VM

I 1% - 49 instances & _class iava.securitv.Provider

All references may be transitive €

By default, the "Merged dominating references" view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots. Sometimes,
the reference tree may lead to the same root objects along many different paths. By choosing
the "GC roots to objects" view mode in the drop-down at the top of the view, you can see the
reverse perspective where the roots are at the top level and the objects in the current object set
are in the leaf nodes. In that case, the references go from the top level towards the leaf nodes.
Which perspective is better depends on whether the references you want to eliminate are close
to the current object set or close to the GC roots.

91

Inspections

The "Inspections" view does not show data by itself. It presents a number of heap analyses that
create new object sets according to rules that are not available in the other views. For example,
you may want to see all objects that are retained by a thread local. This would be impossible to
do in the reference views. Inspections are grouped into several categories and explained in their
descriptions.

© Classes Wl Allocations EE Biggest Objects 1 References O Time @ Inspections 3

Current object set: 60,357 objects in 1,319 classes.
1 selection step, 5,651 kB shallow size

Awailable Inspections:

* Duplicate objects Description

Find duplicate java. lang. String objects in the current object set,
Duplicate strings
After the inspection is calculated, you will see a statistics table at the top of all
heap walker view where you can select each duplicate string value and analyze
the correspending string objects separately.

Duplicate primitive wrappers

Duplicate arrays

Mote: If no java. lang. String cbjects are contained in the current object

[Collections & Arrays set, the inspection will return the empty object set.

P4 Reference & field analysis Configuration

(& Weak references Minimum length: 20 ¥
B Stack references Status
2 Thread locals o Mot calculated ::C';} Calculate inspection and create a new object set

© Classes & Class loaders

e Custom inspections

An inspection can partition the calculated object set into groups. Groups are shown in a table
atthe top of the heap walker. For example, the "Duplicate strings" inspection shows the duplicate
string values as groups. If you are in the reference view, you can then seethej ava. | ang. Stri ng
instances with the selected string value below. Initially, the first row in the group table is selected.
By changing the selection, you change the current object set. The Instance Count and Size columns
of the group table tell you how large the current object set will be when you select a row.

92

@ Classes Ml Allocations EE Biggest Objects K References o Time @ Inspections +

Ohbject groups:
Priority Duplicate String Instance Count String Length Total Size

1 makeConcatWithConstants 34 23 782 bytes
2 ChUsers\ingohprojects\jprofilerdist\bin 4 4 164 bytes
3 file:///C:f Users/ingo/projects/jprofiler/dist/demo/bezier/classes/ 2 66 132 bytes
4 C:\Users\ingo'jdks\jbrsdk-11_0_13-b1751.16 3 42 126 bytes
5 ChUsers\ingohprojects\jprofilerdistidemo’\bezierclasses 2 57 114 bytes
6 (Ljava/lang/Object;Ljavaslang/Object;)Ljavalang/Object; 2 56 112 bytes
7 C\Program Files\Java\jdk1.8.0_201 3 34 102 bytes
8 Ci\Users\ingo\projectsjprofilerdist\bin\agent,jar 2 51 102 bytes

Current object set: 34 instances of java.lang.String
3 selection steps, 816 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references - Use.. > Apply filter .. + Show In Graph | (E
Object Retained Size Shallow Size Allocation Time (himss)
¥ javalang.String b) ["makeConcatWithCo... 64 bytes 24 bytes
» javalang.String 0) ["makeConcatWithCe... 64 bytes 24 bytes
¥ javalang.String) ["makeConcatWithCe... 64 bytes 24 bytes
¥ javalang.String <) ["makeConcatWithCe... 64 bytes 24 bytes

» javalang.String
» javalang.String

"makeConcatWithCo... 64 bytes 24 bytes
2 ["makeConcatWithCo... 64 bytes 24 bytes

& oo oo 6 oo oo 6 o oo o o G o

¥ javalang.String 1) ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String 21 ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String ["makeConcatWithCo... 64 bytes 24 bytes
J javalang.String 1) ["makeConcatWithCo.., 64 bytes 24 bytes
¥ javalang.String 2 ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String 2 ["makeConcatWithCo... 64 bytes 24 bytes
¥ javalang.String 1) ["makeConcatWithCo.., 64 bytes 24 bytes

W izaem lame Shrime (O

B[z leal e abilith o FA badkar 24 b ckar

The group selection is not a separate selection step in the heap walker, but it becomes part of
the selection step made by the inspection. You can see the group selection in the selection step
pane at the bottom. When you change the group selection, the selection step pane is updated
immediately.

Each inspection that creates groups decides which groups are most important in the context of
the inspection. Because this does not always correspond to the natural sort order of one of the
other columns, the Priority column in the group table contains a numeric value that enforces the
sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In this way,
you can go back in the history and look at the results of previously calculated inspections without
waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph. While
the graph has a low visual density and is impractical for some types of analyses, it still is the best
way to visualize relationships between objects. For example, circular references are difficult to
interpretin a tree, but immediately evident in a graph. Also, it may be beneficial to see incoming
and outgoing references together, which is impossible in a tree structure where you can see
either one or the other.

The heap walker graph does not automatically show any objects from the current object set, nor
is it cleared when you change the current object set. You manually add selected objects to the
graph from the outgoing references view, the incoming references view or the biggest objects
view by selecting one or more instances and using the Show In Graph action.

93

© Classes il Allocations .. Biggest Objects K References o Time 3:0:} Inspections +

Current object set: 652 instances of java.awt.geom.GeneralPath

2 selection steps, 20 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =2 Show In Graph 3:0:7 || @ i Show Paths To GC Root

Object Retained Size Shallow Size Allocation Time (him:s)
) jeva.awt.geom.GeneralPath |] 243 bytes 32 bytes n/a
W jeva.awt.geom.GeneralPath | 243 bytes 32 bytes n/a
@ java.awt.geom.GeneralPath | 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath | 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath | 248 bytes 32 bytes nfa
@ java.awt.geom.GeneralPath (0x2241) 243 bytes 32 bytes nfa
[T S I R Ty EENU. -

Package names in the graph are shortened by default. Like in the CPU call graph, you can enable
the full display in the view settings. References are painted as arrows. If you move the mouse
over the reference, a tooltip window will be displayed that shows details for the particular
reference. Instances that were manually added from the reference views have a blue background.
The more recently an instance has been added, the darker the background color. Garbage
collector roots have a red background and classes have a yellow background.

14 Wl Allocations .. Biggest Objects 7 References O Time 7:0} Inspections = Graph

Heap Walker Object Graph

The object graph is not cleared when the current object set is changed. You can add chjects from different object sets and explore their
relaticnships and connectiens.

Use.. v Show Paths To GC Root Find Path Between Two &

2f]

JutilldentityHashmap

ference of AWT-EventQueue-0

ack of <system threads= in \') /

wtAWTAUtoShutdown 3 s awt AWTALtaShutdown >
run

_) — .
s awtAWTAutoShutdown \‘ Mg Eb=a
- jlang Thread

By default, the reference graph only shows the direct incoming and outgoing references of the
current instance. You can expand the graph by double-clicking on any object. This will expand
either the direct incoming or the direct outgoing references for that object, depending on the
direction you're moving in. With the expansion controls on the left and right sides of an instance,
you can selectively open incoming and outgoing references. If you need to backtrack, use the
undo functionality to restore previous states of the graph, so you don't get distracted by too

many nodes. To trim the graph, there are actions for removing all unconnected nodes or even
for removing all objects.

J.utilHashSet

=1

jlang.Object

J | EH ellelle

‘o
=

Like in the incoming references view, the graph has a Show Path To GC Root button that will
expand one or more reference chains to a garbage collector root [p. 209] if available. In addition,

94

there is a Find Path Between Two Selected Nodes action that is active if two instances are selected.
It can search for directed and undirected paths and optionally also along weak references. If a
suitable path is found, it is shown in red.

@ Path Search Options X

Search Directions
Search for directed path from first to second object
[Search for directed path from secend to first object
Search for undirected path @)

Options

This search follows soft references, as per the initial retention setting
for the heap dump.

Also follow weak, phantomn and finalizer references for this search (7]

[:] Stop search at classes Q

Initial object set

When you take a heap snapshot, you can specify options that control the initial object set. If you
have recorded allocations, the Select recorded objects check box restricts the initially displayed
objects to those that have been recorded. The numbers will usually differ from those in the live
memory views, because unreferenced objects are removed by the heap walker. Unrecorded
objects are still present in the heap snapshot, they are just not displayed in the initial object set.
With further selection steps you can reach unrecorded objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced objects
are distracting when looking for memory leaks where only strongly referenced objects are
relevant. However, in those cases where you are interested in weakly referenced objects, you
can tell the heap walker to retain them. The four weak reference types in the JVM are "soft",
"weak", "phantom" and "finalizer" and you can choose which of them should be sufficient for
retaining an object in the heap snapshot.

@ Heap Snapshot Options X

Select recorded ohjects
Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section.
[:] Perform full GC in heap snapshot O
Retain objects held by soft references hd

[soft
weak

finalizer

Show Overhead O

If present, weakly referenced objects can be selected or removed from the current object set by
using the "Weak reference" inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case. While
you could do this by starting and stopping allocation recording around that use case, there is a
much better way that has a lot less overhead and preserves the allocation recording feature for
other purposes: The Mark Heap action that is advertised on the heap walker overview and that
is also available in the Profiling menu or as a trigger action marks all objects on the heap as "old".
When you take the next heap snapshot, it is now clear what the "new" objects should be.

95

Telemetries

Live Memaory

Heap Walker

CPU Views

Threads

Menitors & Locks

Databases

HTTP, RPC & JEE

VM & Custom Probes

' O @ W > umpg 4

Smy MBeans

@

If there was a previous heap snapshot or a mark heap invocation, the title area of the heap
walker shows the new instance count and two links titled Use new and Use old that allow you to
select either the instances that have been allocated since that point in time, or the surviving
instances that were allocated before. This information is available for each object set, so you can

@ No snapshot has been taken.

For a maximum of features:
Press to take a JProfiler heap snapshot

+ The snapshot is displayed in this frame and saved together with profiling information
from other views

= For live profiling sessions, special features are available

» Integrations with other views require this snapshot type

Press * to indicate the starting point of a use case

» All objects that are currently on the heap will be marked as old

= When you take the next heap snapshot, new and old objects will be listed separately
in the header

» You can select new or old objects only, making it easy to track down memory leaks

For a minimum of overhead:
Y
Press | g totake an HPROF heap snapshot

» The snapshot is saved separately and displayed in another frame
» MNot all features are available

» Memory and CPU overhead in the profiled VM are lower than for the JProfiler

drill down first and select new or old instances later on.

Q@ Classes Wl Allocations

.- Biggest Objects 3 References O Time @ Inspections

Current object set: 96,409 objects in 1,327 classes.

1 selection step, 7,563 kB shallow size

34,841 new instances (36.1%) since the last heap dump Use old

@C\asses hd Use.. ¥

bytel]
Jjavalang.5tring
java.util.HashMapSMode
javalang.long

& Group By Class Loaders

Name

Instance Count Size
I 20.66¢ (21 %)
I 14,296 (15 %)

I 10,122 (10 %)
I 5756 (5 %)

96

Calculate estimated retained sizes

987 kB
357 kB
324 kB
138 kB

Thread Profiling

Using threads incorrectly can create many different kinds of problems. Too many active threads
can result in thread starvation, threads can block each other and impact the liveness of your
application or acquiring locks in the wrong order can lead to deadlocks. In addition, information
about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections: The "Threads" section deals with the
life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section offers
functionality for analyzing the interaction of multiple threads.

’i:!' Live Memory
"
ﬁ Heap Walker

CPU Views

Threads

Monitors & Locks

Databases

HTTP, RPC & JEE

© @ E|~D i |mm

JVM & Custom Probes

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time, by name or by
their thread group and can be filtered by name. You can also rearrange the order of threads
yourself via drag and drop. When monitor events have been recorded, you can hover over parts
of a thread where it was in the "Waiting" or "Blocked" state and see the associated stack trace
with a link into the monitor history view.

’ Both alive and dead Sort by start time hd d
Telemetries
I NEBERRERI N EERRERRERRRRRRRRRRRR R R
Threads 1 0:20 0:30
-‘:I. Live Memory main [main] 1
HSQLDE Server @13acb0d1 [main] U |
b HSOLDE Timer @530ea8206 [main]
-ﬁ LaplWals AWT-EventQueue-0 [main] 1 :
pool-1-thread-1[mazin] 1 |
I CPU Views pool-1-thread-2 [main] u |
pool-1-thread-3 [main] u |
- Treers pool-1-thread-4 [main] u |
— pool-1-thread-5 [main] u |
— Tomcat JDBC Pocl Cleaner[17171534... |
o HSOLDE Connection @12963974 [|
Thread Menitor HSQLDE Connection @22c3957 [... |
ST HSQOLDE Connection @641f0d65 ... |
MBS HSOLDE Connection @6780e3al [|
n y HSQOLDB Connection @44fe2bbce [...
1 Menitors & Locks
; Databases == Runnable = Waiting ™= Blocked ™ MNetl/O /O ko

A tabular view of all threads is available in the thread monitor view. If CPU recording is active
while a thread is being created, JProfiler saves the name of the creating thread and displays it

97

in the table. At the bottom, the stack trace of the creating thread is shown. For performance
reasons, no actual stack trace is requested from the JVM, but the current information from CPU
recording is used. This means that the stack traces will only show those classes that satisfy the
filter settings for call tree collection.

’ Telernetries Name Group Start Time Creating Thread Status
HSQLDE Server @13a... main 0:00.263 main [main] I Netl/O
H50LDE Timer @30e... main 0:00.531 H50OLDE Server @13ach0... =3 Waiting
AWT-EventQueue-0 main 0:00.865 main [main] =1 Waiting

e emor pook-1-thread-1___Jmain 000969 ____|AWT-FveniQueue-D [moin] = Net /0]

pool = main LUU.S0 ventliueue: main et/
pool-1-thread-2 main 0:00.970 AWT-EventQueue-0 [main] £ Net /0
b Heap Walker pool-1-thread-3 main 0:00.970 AWT—EVentQueue—D[me!n] I Netl/O
pool-1-thread-4 main 0:00.970 AWT-EventQueue-0 [main] =3 Net /0
pool-1-thread-5 main 0:00.970 AWT-EventQueue-0 [main] =3 Net /O
I CPU Views Tomcat JDBC Pool Cl.. main 000,923 pool-1-thread-1 [main] =3 Waiting
HSCQLDE Connection ... HSOLDE Connection... 0:01.013 H50OLDE Server @13ach0... =3 Waiting
— HSQLDE Connection ... HSOLDE Connection... 0:01.152 HSOLDE Server @13acb0... =3 Waiting
Threads HSQLDE Connection ... HSOLDE Connection... 0:01.254 HSOLDB Server @13acbl... £ Waiting
HSQLDB Connection ... HSOLDB Connection... 0:01.359 HSOLDB Server @13acbl... £33 Waiting
H50LDB Connection ... HSOLDB Connection... 0:01.465 HSQOLDB Server @13achl.. =3 Waiting

Thread History

Thread Monitor X X
Filtered stack trace for thread creation: 0

Thread Dumps java.util.concurrent.ExecutorService.submit(java.util.concurrent.Callable)

N jdbcJdbeDemo.startActivity(boolean)
1 Monitors & Locks jdbe.ServerControllerFrame.updateActivity()
jdbe.ServerControllerFrameS2. windowOpened (java.awt.event WindowEvent)
; Databases

java.awt.EventDispatchThread.run()

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time column
is added to the table. CPU time is only measured when you record CPU data.

€ Session Settings X
g

4l Enable CPU profil
Application Settings 2 Enable]

Aute-Tuning For Instrumentation

Enable auto-tuning 0

A methed is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

Call Tree Recording

Call Tree Filters

1. The total time of the method is more than 10 | % permille of the entire total time
Trigger Settings 2. The average time of the method is less than 100 | %) ps
Auto-tuning is only performed if the method call recording type is set to "Instrumentation” on
Databases the method call recording tab.
Call Tree Recording Optiens
HTTP, RPC & JEE

CPU times for instrumentation: () Elapsed times) Estimated CPU times| €

Instrument native methods 0

VM & Custom Probes Thread resolution for async sampling €

Exceptional Method Run Recording

S O0OQ@ W T 4

Advanced Settings
Mazximum number of separately recorded methed runs: 5% @

CPU Profil
e Time type for determining exceptional method runs: | EX0 All states v
Probes & JEE

Call Tree Splitting
Memary Profiling

Maximum number of splits: 128 |5 | @

T P E

General Settings Copy Settings From Cancel

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread dumps
are the full stack traces provided by the JVM and do not depend on CPU recording. Different
thread dumps can be compared in a diff viewer when you select two thread dumps and click the
Show Difference button. It is also possible to compare two threads from a single thread dump by
selecting them and choosing Show Difference from the context menu.

98

” Telemetries

’!:!' Live Memaory
b Heap Walker
I CPU Views

Threads

Thread History
Thread Monitor

Thread Dumps

N
1

Monitors & Locks

Thread durmnps: ; x || @

at 0:11.112.557
at 0:09.622.507
at 0:08.100.097

H50LDB Connection @22¢3f957
H50LDB Connection @44fedbbc
HSQLDB Connection @641f0d65
HSQLDB Connection @6780e3al
main
AWT-EventQueue-0
H50LDE Server @13acb0d1
H50LDE Timer @30eal206
Tomcat JDBC Pool Cleaner[1717139310:16929345642537]
pool-1-thread-1

= Copy Selected Threads To Clipboard Ctrl+C

sun.t @ Show Difference Cird+Alt+D g, ir
sun.nio.ch.5ocketDispatcher.readijava.ic.FileDescriptor, long, int
sun.nio.ch.MioSocketlmpl.tryRead(java.io. FileDescriptor, byte[1,
sun.nio.ch.MioSocketimplimplRead(byte[1. int, int) (line: 312)
sun.nio.ch.MioSocketimpl.read(byte[], int, int) (line: 350)
sun.nio.ch.MioSocketlmpl$1.read(byte[], int, int) (line: 803}
Jjava.net.SocketSSocketinputStream.read(byte(|, int, int] (line: 96
java.ic.BufferedinputStream.fill() (line: 244)

java.io.BufferedinputStream.read() (line: 263)
javaio.DatalnputStream.readByte() (line: 271)
org.hsqldb.result.Result.newResult(java.io.Datalnput, org.hsgldb

; Databases

Thread dumps can also be taken with the "Trigger thread dump" trigger action or via the API.
Analyzing locking situations

Every Java object has an associated monitor that can be used for two synchronization operations:
A thread can wait on a monitor until another thread issues a notification on it, or it can acquire
a lock on a monitor, possibly blocking until another thread has given up the ownership of the
lock. In addition, Java offers classes in the java.util.concurrent.|ocks package for
implementing more advanced locking strategies. Locks in that package do not use monitors of
objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking situation,
there are one or multiple threads, a monitor or an instance ofj ava. uti |l . concurrent. | ocks.
Lock as well as a waiting or blocking operation that takes a certain amount of time. These locking
situations are presented in a tabular fashion in the monitor history view, and visually in the
locking history graph.

N

Currentevent: | [€ | » 2l 2720 [ato:04053.833]

” Telemetries

Event of interest: no nedes of interest have been marked Recording thresholds: *

Class: java.lang.Ohject
| AWT-EventQueue-0 [main]
Waiting for monitor since (:04.043.020 in:]

Threads

Thread-0 [main] [-———————

[T I A R A A A R A A A B R
‘ 010 0:20

Il

mm Event mmm Eventinvolving nodes of interest = Currently displayed event » /@ % _|

Q Monitors & Locks

Current Locking Graph

Current Monitors

Show in monitor history

Locking History Graph

Manitor History

Manitor Usaae Statistics

The locking history graph focuses on the entire set of relationships of all involved monitors and
threads rather than the duration of isolated monitor events. Threads and monitors participating
in a locking situation are painted as blue and gray rectangles, if they are part of a deadlock, they

99

are painted in red. Black arrows indicate ownership of a monitor, yellow arrows extend from
waiting threads to the associated monitors, while a dashed red arrow indicates that a thread
wants to acquire a monitor and is currently blocking. Stack traces are available when hovering
over blocking or waiting arrows if CPU data has been recorded. Those tool tips contain hyperlinks
that take you to the corresponding row in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is displayed
as a column, so you can find the most important events by sorting the table. For any selected
row in the tabular view, you can jump to the graph with the Show in Graph action.

s, & - O m + — N
R 8 T S % 0 a | =G
Start Stop Start Add View Stop Freeze show In | Show In
lecordings Recordings Tracking | " O Bookmark | PP Settings Help Moniters View Heap Walker| Graph
All types ¥ | Threshold in ms: 0¥ A A
Time Duration Type Manitor ID Maonitor Class Waiting Thread Owning Thread
J 23, v 200 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...
033 Blocked b 2ezierAnimSD... [Thread-0 [main] [AWT-EventQueue-0 [ma...
0:03.305 [J . 200 ms =2 Waiting 2 javalang.Object AWT-EventQueue-0 [ma..,
0:05.316 [190 ms = Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma...
0:06.569 [J 188 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [mz...
0:06.579 [J 189 ms Bl Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma...
0:07.828 [J 200 ms 3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...
0:07.838 [Jul 190 ms Ml Blocked 3 bezier.BezierAnimSD... Thread-0 [main] AWT-EventQueue-0 [ma..
Total from 8 ro... 1,361 ms

Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change]
Filtered stack trace for waiting thread: (7] Filtered stack trace for owning thread:

Each monitor event has an associated monitor. The Monitor Class column shows the class name
of the instance whose monitor is used, or "[raw monitor]" if no Java object is associated with the
monitor. In any case, monitors have a unique ID that is displayed in a separate column, so you
can correlate the usage of the same monitor over multiple events. Each monitor event has a
waiting thread that is performing the operation and optionally an owning thread that is blocking
the operation. If available, their stack traces are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action in both
monitor history view and locking history graph provides a link into the heap walker and selects
the monitor instance as a new object set.

B £ t o 7 + — n
H 8B T C % 0 2 -2
Start Stop Start Add View Stop Freeze Show In | Show In
lecordings Recordings Tracking | " OC Bogkmark | DPT" Settings HEP ot View Heap Walker | Giaph
All types ¥ | Threshold in ms: 0¥ A A
Time Duration Type Menitor ID Menitor Class Waiting Thread Owning Thread
0:04.043 [Jul 25, ... 200 ms =3 Waiting 2 java.lang.Object AWT-EventQueue-0 [ma...

0:04033 Jul25,..] 189ms| Blocked | 3bezierBezierAnimSD... |Thread-0 [main] AWT-EventQueue-0 [ma..

0:05.305 [Jul 25, ... 200 ms =3 Waiting 2 javalang.Object AWT-EventQueue-0 [ma...,

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for waiting
and blocking events below which events are immediately discarded. These thresholds are defined
in the view settings and can be increased in order to focus on longer events.

100

Current event: N |4 £ 21 2740 [at0:04.053.833]

Event of interest: FARP . IR Recording thresholds: 1,000 ps blocking / 100,000 pswa\tingl Chanae
| © Monitor History Graph View Settings X

| AWT-EventQueue-0 [main]

Recording Time line

Recording Threshaolds

| — Monitor blocking threshold: 1,000 | % HS

Monitor waiting thresheld: 100,000 | ¥ us
T T R I B A A R A A A R A A R R '
010 0:20 All events with a duration that is lower than the configured thresheld will be
discarded.
Warning: If you lower the thresholds, more data will be recorded. Please note
that the acenriated memans muerhead armwes linearks in fime

mm Event mm Event involving nodes of interest = Clrrently displayed event CliEk aRd diag 0 cumulste events "@"] |_ _| E®

To the recorded events, you can further apply filters. The monitor history view offers a threshold,
an event type and a text filter at the top of the view. The locking history graph allows you to
select a thread or a monitor of interest and only show locking situations that involve the marked
entities. Events of interest are shown with a different color in the time line, and there is a
secondary navigation bar to step through those events. If the current event is not an event of
interest, you can see how many events are between the current event and the next event of
interest in either direction.

In addition to locking situations where the selected thread or monitor are present, the locking
situations where it is removed from the graph are shown as well. This is because each monitor
event is defined by two such locking situations, one where an operation is started and one where
it has ended. This also means that a completely empty graph is a valid locking situation that
indicates that there are no more locks in the JVM.

Current event: N | & # | |21 2728 [at0:04.053.833]

F\reﬂt of interest: FARP . IRV 14| Recording thresholds: 1,000 ps blocking / 100,000 ps waiting [Change

Class: java.lang Ohject
| AWT-Event@ueue-0 [main] Monitor Id: 2

Class: bezier.BeziainlmiDomo
ULGT ™ | Mark Nodes of Interest

Thread-0 [main] >

Remove Mark

i Show Selection In Heap Walker

AR RN RN RN
Ll 0:20 0:30 I Export View culeR 3 110
] ‘ ‘ | & View Settings Ctrl+T
mm Event = Event involving nodes of interest = Currently displayed event Click and drag to cumulate events p |_ _|

Another strategy to reduce the number of events that need your attention is to cumulate locking
situations. In the locking history graph, there is a time line at the bottom that shows all recorded
events. Clicking and dragging in it selects a time range and data from all contained events is
shown in the locking graph above. In a cumulated graph, each arrow can contain multiple events
of the same type. In that case, the tool tip window shows the number of events as well as the
total time of all contained events. A drop-down list in the tool tip window shows the time stamps
and lets you switch between the different events.

101

Deadlock detection

The "Current locking graph" and the "Current monitors" views operate on a "monitor dump"
that is triggered with an action in the JProfiler Ul. With a monitor dump, you can inspect events
that are still in progress. This includes deadlocks which are events that never finish and cannot
be shown in the history views.

Blocking operations are usually short-lived, but in the event of a deadlock, both views will display
a permanent view of the issue. In addition, the current locking graph shows the threads and
monitors that produce a deadlock in red, so you can spot such a problem immediately.

Taking a new monitor dump will replace the data in the both views. You can also trigger monitor
dumps with the "Trigger monitor dump" trigger action or via the API.

Menitors dumped at 0:12 @
’ Telemetries

‘i:l' Live Memaory
Thread-1 [main] Y

J v
'ﬁ Heap Walker '
Thread-3 [main] - "\\
\

I CPU Views N \..\

N

.))

Class: java.lang.Ohject
== Thread-4 [main] F-———— 2
Threads / Monitor Id: 2
l‘ Menitors & Locks Thread-2 [main]

Current Locking Graph

Class: java.lang.Object
Thread-0[main] | _____ - Wonitor Id: 1

Blocked on monitor since 0:08.077.043 in: (2

Current Monitors
Iy ey S Jjavalang.Objectwait{long)

Monitor History misc.DeadlockTestS1.run()

Manitor Usaae Statistics

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the monitor
statistics view calculates reports from the monitor recording data. You can group monitor events
by monitors, thread names, or classes of monitors and analyze cumulated counts and durations
for each row.

102

m® H #

Start Session

St
Center “P Snapshot Settings

- Telemetries
‘ Live Memary

i Heap Walker
I CPU Views
;’:./ Threads
r? Menitors & Locks

Current Locking Graph
Current Monitors
Locking History Graph
Moniter History

Menitor Usaae Statistics

£ 8B T S % @ O &

n

]

Start Stop Start Add View Calculate Stop
Recordings Recordings Tracking | " U Bockmark | PO Settings Help Statistics Monitors | H
Monitor Usage Statistics Grouped by Monitors

Menitors Block Count Block Duration Wait Count Wait Duraticn
bezier.BezierinimsDem... 13 2,468 ms 0 0 ps
java.lang.Object (id: 2) 0 0 ps 13 2,604 ms
java.util.concurrent.lock... 0 Ops 1,244 11,211 ms
java.util.concurrent.lock... 0 Ops 3 70 ps!

€ Monitor Usage Statistics Options x
Select the desired monitor usage statistics:
O Group by Monitors
Group by Threads
Group by Classes of monitors
o [T
@ 1 active recording VM #1 00:21 @ Profiling

103

Probes

CPU and memory profiling are primarily concerned with objects and method calls, the basic
building blocks of an application on the JVM. For some technologies, a more high-level approach
is required that extracts semantic data from the running application and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call tree
shows when you use the JDBC API and how long those calls take. However, different SQL
statements may be executed for each call, and you have no idea which of those calls are
responsible for a performance bottleneck. Also, JDBC calls often originate from many different
places in your application and it is important to have a single view that shows all database calls
instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the JRE.
Probes add instrumentation into specific classes to collect their data and display them in dedicated
views in the "Databases" and "JEE & Probes" view sections. In addition, probes can annotate data
into the call tree so you can see both generic CPU profiling as well as high-level data at the same
time.

Live Memory
Heap Walker
CPU Views
Threads

Monitors & Locks

i)
G
y
n
1
; Databases
@
@

HTTP, RPC & JEE

JVM & Custom Probes

MBeans

If you are interested in getting more information about a technology that is not directly supported
by JProfiler, you can write your own probe [p. 159] for it. Some libraries, containers or database
drivers may ship with their own embedded probe [p. 164] that becomes visible in JProfiler when
they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start
recording [p. 26] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views. At the
lowest level are probe events. Other views show data that cumulates probe events. By default,
probe events are not retained even when a probe is being recorded. When single events become
important, you can record them in the probe events view. For some probes, like the file probe,
this is generally not advisable because they usually generate events at a high rate. Other probes,
like the "HTTP server" probe or the JDBC probe may generate events at a much lower rate and
so recording single events may be appropriate.

104

£ 8 P C % LT85 0 @ |5k 3

Seconings Racoigs Tackpg | "7 Boommie | %P emngs | "0 ioac | cere | Vew Onee
4, Hot Spots T Connection Leaks 8 Telemetries Events 3 JDBC g
JDBC connections 2nd execution of statements
All types ¥ | Filter in all text columns = i A
Start Time Event Type Duratiun Connection ID Description Thread
(:03.211 [Jul 25, 20... £ Connection o.. jdbe: demo //remote_host/test Sar\flet request sim..
3 _
0:03.519 [Jul 3 Connection o.. Ops2 Jjdbc:deme://remote_host/test Sarvlet request sim...
0:03.564 [Jul W Prepared state... 173ms 2 SELECT * FROM ORDER O WHERE O... Servlet request sim...
0:04.092 [Jul W Prepared state.., 45,695 ps 1 INSERT INTO CUSTOMER. (ID, NAM... Servlet request sim...
0:04,191 [Jul mm Prepared state.., 69,194 us 1 INSERT INTO ORDER. (1D, MAME, OP... Servlet request sim...
004,338 [Jul mm Prepared state... 78,103 us1 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
0:04.427 [Jul mm Prepared state... 79,691 us 2 INSERT INTO CUSTOMER (1D, NAM... Serviet request sim...
0:04.568 [Jul W Prepared state... 72375 s 2 INSERT INTO ORDER. (1D, MAME, OP... Servlet request sim...
0:04.695 [Jul W Prepared state... 82,997 ps 2 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
MNS 283710025 20 M1 Connectinon n Noe 3 idhedemne {fremnte hnet ftect RMI TP Cnnnectin

Total from 110 rows: 36,941 ms

+ Selection ﬂm Duration
Stack trace:

javax.persistence. TypedQuery.getResultlist()
com.gjt.demo.server.handlers.RequestHandler.executelpaQuery(javax persistence EntityManager)
com.ejt.demo server.handlers.RequestHandler.makelpaCall()

com.ejt.demo server.handlers.RequestHandler.performWork()

Probe events capture a probe string from a variety of sources, including method parameters,
return values, the instrumented object and thrown exceptions. Probes may collect data from
multiple method calls, for example, like the JDBC probe that has to intercept all setter calls for
prepared statements in order to construct the actual SQL string. The probe string is the basic
information about the higher-level subsystem that is measured by the probe. In addition, an
event contains a start time, an optional duration, the associated thread and a stack trace.

At the bottom the of the table, there is a special row that shows the total number of displayed
events and sums all numeric columns in the table. For the default columns, this only includes
the Duration column, Together with the filter selector above the table, you can analyze the
collected data for selected subsets of events. By default, the text filter works on all text field
columns, but you can choose a specific filter column from the drop-down before the text field.
Filter options are also available from the context menu, for example, to filter all events with a
duration larger than that of the selected event.

4} Hot Spots 7 Connection Leaks M Telemetries Events ’ JDBC ﬂ
1DBC connections 2nd execution of statements
All types A Filterin all text columns o v
Start Time Event Type Duration Connection |D Description Thread
0:01.788 [Jul 28, 20... T3 Connection o.. Opsi jdbodemo:/fremote_host/test Servlet request sim...
0:01.828 [*--tan a0 m—Roo oo Aaer AT e SELECT* FROM ORDER O WHERE O... Servlet request sim...
0:02.049 | Fll Show Connections For Selected Events Ctrl+Alt+ C jdbe:deme://fremote_host/test Servlet request sim...
0:02.071 “7777 77 TM ORDER O WHERE O... Servlet request sim...
0:02.756 Duration CUSTOMER (ID, MAME... Servlet request sim...
0:02.898 Filter Greater Than This » Connection D CUSTOMER. (ID, MAME... Servlet request sim...
0:02.899 Eilter Less Than This » Description ORDER (ID, NAME, OP... Servlet request sim...
0:03.003 ORDER_CUSTOMER (O... Servlet request sim...
0:03.045 | 5 Stop Recording Probe Events Thread ORDER (1D, NAME, OP... Servlet request sim...
0:03.162 jdbc:dema://remote_host/test Servlet request sim...
Sort Events 4

n-n2 181 SFIFCT* FROM ORMER N WHFERF 01 Sandet reniiest sim

Total from | - Find Ctrl+F

o Selecti < Show Row Details Ctrl+Alt+|
Stack trace: * Export View Ctri+R
Javax.persic View Settings Ctrl+T

com.gjt.defnoservenmanuersequestsnurenexccurspacoe yavanper sistence. EntityManager)
com.gjt.demo.server.handlers.RequestHandler.makelpaCall()
com.ejt.demo.server.handlers.RequestHandler. performWork()

Other probe views also offer options to filter probe events: In the probe telemetries view you
can select a time range, in the probe call tree view you can filter events from the selected call

105

stack, the probe hot spots view offers a probe event filter based on the selected back trace or
hot spot and the control object and time line views offer actions to filter probe events for the
selected control object.

Stack traces of selected probe events are shown at the bottom. If multiple probe events are
selected, the stack traces are cumulated and shown either as a call tree, as probe hot spots with
back traces or as CPU hot spots with back traces.

4}, Hot Spots ‘.‘ Connection Leaks B Telemetries ' Events » JDEC g
JDBC connections and execution of statements.
All types A Filter in all text columns v | i v
Start Time Event Type Duration Connection |D Description Thread
0:01.367 [Jul 28, 20.. |m= Connectiono..| Opst lidbcdemos//remote hosttest
0:01.400 [1ul 25 |dbc demos//remote_host/test
0:01.412 [Jul 28, 20... B SELECT * FROM ORDER O WHERE 0.,
0:01.412 [Jul 28, 20.. SELECT * FROM ORDER 0 WHERE 0---
0:01.811 [Jul 28, 20.. |m= Connectiono.. | 0us3 ____ldbademoi//remote host/test
0:01.827 [Ju mm Prepared state... 192 ms 3 SELECT* FROM ORDER O WHERE Q... Servlet request sim...
0:01.971 [Jul W Prepared state... 78,287 ps 1 IMSERT INTO CUSTOMER. (ID, NAME... Servlet request sim...
0:02.128 [Jul B Prepared state... 69,460 ps 1 IMSERT INTO ORDER (ID, NAME, OP... Servlet request sim...
0:02.241 [Ju B Prepared state... 63,011 ps 1 IMSERT INTQ ORDER_CUSTOMER (O... Serviet request sim...
M0DIRG 10 I0 I em Deanared chabe S0 8T e D IMCERT INTA CHETARMER (I MARME Candat ramiisct cimn
Total from 146 rows: 49,750 ms
+ Selection M Duration
Probe call tree from selected events hd I

) o 100.0% - 328 ms - 5 evt. com.gjt.demo.server. DemoServerS3.run
a_ 55.8% - 183 ms - 2 evt. HTTP: /demo/view
) = 14.2% - 145 ms - 2 evt. HTTP: /demo/viewl
@ 0.0%- 1 evt. HTTP: /demo/view5

Next to the stack trace views, histogram views for event durations and optionally for recorded
throughput are shown. You can select a duration range in these histograms with the mouse in
order to filter probe events in the table above.

4} Hot Spots 7 Connection Leaks M Telemetries ' Events 3 JDBC g
1DBC connections and execution of statements
All types A Filter in all text columns ¥ | Ci- v
Start Time Event Type Duration Connection 1D Description Thread
0:01.367 [Jul 3 Connection 0. Dpsi Jjdbcidemo://remote_host/test Servlet request sim...
0:01.400 [Jul 3 Connection 0. Dps2 jdbaidemo://remote_host/test Servlet request sim...
0:01.412 [Ju mm Prepared state... 183ms2 SELECT * FROM ORDER O WHERE Q... Servlet request sim...
001412 Tl 28 W Prenared ctate... 145 me 1 SFI FCT* FROM ORNFR O WHFRF ()... Servlet recuest cim..
Total from 157 rows: 53,283 ms
+ Selection M Duration
il il il il il il il il il |
1s
100
€]
S 10 4
H]
@
&]
14
Event duration log

Probes can record different kinds of activities and associate an event type with their probe events.
For example, the JDBC probe shows statements, prepared statements and batch executions as
event types with different colors.

106

4}, Hot Spots ? Connection Leaks ! Telemetries Events » JDBC 3

JDBC connections and execution of statements.

All types Filterin all text columns v
Cnnna(t!nn opened [ype Duration Connection 1D Description Thread
[connection closed tion o... Ops idbe:demo://remote_host/test Servlet request sim...
[statement execution d state... 158 ms 1 SELECT * FROM ORDER O WHERE O... Serviet request sim...
P'EPEVEd statement execution lign o,., Dps Jjdbcidemo:/remote_host/test Servlet request sim...
[Batch execution d state.., 173ms2 SELECT * FROM ORDER O WHERE Q... Serviet request sim...
d state... 45,695 ps 1 INSERT INTO CUSTOMER (ID, NAM... Servlet request sim...
Select All Select Mone .
———— T |dstate.. 69,184 ps 1 INSERT INTO ORDER (ID, NAME, OP... Servlet request sim...
“ Cancel d state... 78103 ps 1 INSERT INTO ORDER_CUSTOMER (... Servlet request sim...
URORRE T [T 7, T —rropared state.., 79,601 ps 2 INSERT INTO CUSTOMER (ID, NAM... Servlet request sim...
AN SED 1175 90w Pemoend b 71975 .2 INCEDT INTA ADALD AR RIARAE AR Sk ek i

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only the
most recent events are retained, older events are discarded. This consolidation does not affect
the higher-level views.

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated into
a probe call tree where the probe strings are the leaf nodes, called "payloads". Only call stacks
where a probe event has been created are included in that tree. The information on the method
nodes refers to the recorded payload names. For example, if an SQL statement was executed
42 times at a particular call stack with a total time of 9000 ms, this adds an event count of 42
and a time of 9000 ms to all ancestor call tree nodes. The cumulation of all recorded payloads
forms the call tree that shows you which call paths consume most of the probe-specific time.
The focus of the probe tree is the payloads, so the view filter searches for payloads by default,
although its context menu also offers a mode to filter classes.

. JDBC
4 o Call Tree 1. Hot Spots T Connection Leaks ¥ Telemet» 3
JDBC connections and execution of statements
Thread status: o Thread selection: Aggregation level:
o Allstates v | @ Al thread groups v | @ Methods =

@ W 79,1% - 32,624 ms - 44 evt, java.util.concurrent. ThreadPoolExecutorSWerker.run
©| W 23.9% - 11,928 ms - 15 evt. called from call site #1 (remote VIV £1)
VAV 28.9% - 11,926 ms - 15 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl.remoteOperation
VAV 08,99 - 11,926 ms - 13 evt. com.gjt.demo.server.handlers.RmiHandlerlmpl perfformWork
VA 28.9% - 11,926 ms - 13 evt. com.gjt.deme.server.handlers.RmiHandlerlmpl.executeldbcStatemnents
B 28.9% - 11,926 ms - 15 evt. java.sql. Statement.executeQuery
W 28,9% - 11,926 ms - 13 evt, SELECT i.id, i.availability, i.name FROM inventory i WHERE i.delayed = 1
“| W 15.6% - 6,435 ms - 9 evt. called from call site 4 (remote VI £1)
“| M11.2% - 4607 ms - 6 evt. called from call site #10 (remote VM £1)
7i 03,2% - 3,802 ms - 6 evt. called from call site #12 (remote VM #1)
“| 98.3% - 3,432 ms - 5 evt. called from call site £6 (remote VM £1)
“115.9% - 2,420 ms - 3 evt. called from call site #16 (remote VM #1)
@ M 20.9% - 8,629 ms - 70 evt, com.ejt.demo.server.DemoServerd3.run
(@D17.9%-3,260 ms - 8 evt. com.gjt.demo.server.handlers.JdbcJobHandler.run
ol 5.4% - 2,238 ms - 26 evt. HTTP: /demo/viewd
@l 5.4% - 2,238 ms - 26 evt. com.ejt.dema.server.handlers.RequestHandler.run
(@15.4% - 2,238 ms - 26 evt. com.gjt.demo.server handlers.RequestHandler.performWork
@154%- 2,238 ms - 26 evt. com.gjt.demao.server.handlers.RequestHandler.makelpaCall
13.1% - 1,287 ms - 20 evt. javax.persistence.EntityManager.flush

If CPU recording is switched off, the back traces will only contain a "No CPU data was recorded"
node. If CPU data was only partially recorded, there may be a mixture of these nodes with actual
back traces. Even if sampling is enabled, JProfiler records the exact call traces for probe payloads
by default. If you want to avoid this overhead, you can switch it off in the profiling settings. There
are several other tuning options for probe recording that can be adjusted to increase data
collection or reduce overhead.

107

@ Session Settings

Application Settings

Call Tree Recording

e NTh

Call Tree Filters

Trigger Settings

Databases

HTTP, RPC & JEE

VM & Custom Probes

© ¢ w

" Advanced Settings

CPU Profiling
Probes & JEE
Memary Profiling
Thread Profiling

Miscellaneous

Payload Options

Payloads are consolidated if there are too many different strings. When annotating payloads into the
call tree, payloads are consolidated into an [Earlier calls] node.

Maximum number of distinct payleads for probe hot spots: 16384 |+ @
Maximum number of annotated payloads per call stack: 0+ @
Cutoff payload strings after: 8182 % characters @

I Record payload call stacks in sampling mndel (7]

Retain call stacks when consolidating hot spots €

Event Options

Maximum number of recorded events: 5000 |+ | @
JEE/Spring Options
Detect JEE/Spring components @)
Show request URLs without a recorded call stack 0

Note: Probes are individually configured on the "Database probe settings", "HTTP. RPC & JEE probe
settings” and "JVIM & custom probe settings” tabs. The settings on this tab apply to all probes.

General Settings Copy Settings From “ Cancel

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads and
not method calls like in the CPU view section [p. 52]. This is often the most immediately useful
view of a probe. If CPU recording is active, you can open the top-level hot spots and analyze the
in the regular CPU hot spots view. The numbers on the back trace
nodes indicate how many probe events with what total duration were measured along the call

method backtraces, just like

stack extending from the deepest node to the node just below the hot spot.

4 & Call Tree 1, Hot Spots -.‘ Connection Leaks ! Telemet » . . JDBC 3
JDBC connections and execution of statements
Thread status: 0 Thread selection: Aggregation level:
o Allstates v | @8 All thread groups v | | (D Methods
Hot Spot Time Average Time Events
i SELECT i.id, i.availability, i.name FROM inventory i WHERE i.del... [N N ENEEE 35,972 ms (20 %) 739 ms 50
%, SELECT SUM(o.price * o.quantity) FROM customers c LEFTJOL... B 3,166 ms (6 %) 781 ms 4
% SELECT* FROM ORDER O WHERE O.DATE »= 7 0 2,600 ms (5 %) 162 ms 16

1573 - 2,600 me - 16 hat spot evt. javax.persistence. TypedQuery.getResultList

(@15.7% - 2,600 ms - 16 hot spot evt. com.gjt.deme.serverhandlers.RequestHandler.executelpaQuery
@1 5.7%- 2,600 ms - 16 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.makelpaCall
(@15.7% - 2,600 ms - 16 hot spot evt. com.ejt.demo.server.handlers.RequestHandler.performWork
(@1 5.7% - 2,600 ms - 16 hot spot evt. com.ejt.demo.server handlers.RequestHandler.run
0' 2.4% - 1,097 ms - 7 hot spot evt, HTTP: fdemo/viewd
@ 1.1% - 506 ms - 3 hot spot evt. HTTP: /demo/views
@ 0.8% - 366 ms - 2 hot spot evt. HTTP: /demo/viewl
0 0.8% - 343 ms - 2 hot spot evt. HTTP: /demo/view3
@ 0.6% - 285 ms - 2 hot spot evt. HTTP: /demo/view2

& INSERT INTO CUSTOMER (1D, NAME, OPTIONS) VALUES (2,2,2) | 1,052 ms (2 %) 65,790 pis 16

% INSERT INTO ORDER_CUSTOMER (ORDER_ID, CUSTOMER_ID] V... | 1,031 ms (2 %) 64,490 ps 16

%, INSERT INTO ORDER (ID, MAME, OPTIONS) VALUES (2, 7, 7) | 976 ms (2 %) 61,001 ps 16

& INSERT INTO order_report VALUES (7, 7, 7) 94,172 s (0 %) 23,543 s 4

N DEILETE EROMM ARNER CLISTORMER WHIERE MRNDER M — 7 20 231 e (0 20 20 221 e hl
-

108

Both probe call tree as well as probe hot spots view allow you to select a thread or thread group,
the thread status and an aggregation level for method nodes, just like in the corresponding CPU
views. When you come from the CPU views to compare data, it is important to keep in mind that
the default thread status in the probe views is "All states" and not "Runnable" like in the CPU
views. This is because a probe event often involves external systems like database calls, socket

operations or process executions where it is important to look at the total time and not only on
the time that the current JVM has spent working on it.

Control objects

Many libraries that provide access to external resources give you a connection object that you
can use for interacting with the resource. For example, when starting a process, thej ava. | ang.
Pr ocess object lets you read from the output streams and write to the input stream. When
working with JDBC, you need a j ava. sql . Connecti on object to perform SQL queries. The
generic term that is used in JProfiler for this kind of object is "control object".

Grouping the probe events with their control objects and showing their life cycle can help you
to better understand where a problem comes from. Also, creating control objects is often
expensive, so you want to make sure that your application does not create too many and closes
them properly. For this purpose, probes that support control objects have a "Time line" and a
"Control objects" view, where the latter may be named more specifically, for example,
"Connections" for the IDBC probe. When a control object is opened or closed, the probe creates
special probe events that are shown in the events view, so you can inspect the associated stack
traces.

In the time line view, each control object is shown as a bar whose coloring shows when the
control object was active. Probes can record different event types and the time line is colored
accordingly. This status information is not taken from the list of events, which may be consolidated
or not even available, but is sampled every 100 ms from the last status. Control objects have a
name that allows you to identify them. For example, the file probe creates control objects with
the file name while the JDBC probe shows the connection string as the name of the control object.

Q,'TIITIE Line ; Connections & Call Tree I\, Hot Spot» 1DBC 3
1DBC connections 2nd exscution of statements
Both cpenand closed ¥ | Sort by starttime + v
......... T L I B B B B B B I U B A OO
Physical Connections 0:10 0:20 0:30 0:40 0:50
1 Il Il
jdbcidemo://remote_host/test[|D 1] I ‘ B]
jdbc:demo:/fremote_host/test[I0 2] 1 ‘ | n 1 I
jdboidemno:/fremote_host/test[|D 3] im | HE B m 1IN I EmE
jdbodemo:/fremote_host/test [4] L1 | LLL] e L Il‘ I E
jdbcidemo://remote_hostftest[|D 5] ! H = ‘l ‘
jdbodemo:/fremote_host/test[/D 5] | 4] Il
jdbcidemo://remote_host/test[|D 7] 1 1 ‘
jdbc:demo://remote_host/test[/D 2] i N + Il EEE RN
jdbc:dema:/ fremote_hast/test(I0 9] I I |
jdbc:demo://remote_host/test[ID 10] m | |
= |dle ™= Statement execution ™ Prepared statement execution ™= Batch execution ® ko

The control objects view shows all control objects in tabular form. Both open and closed control
objects are present by default. You can use the controls at the top to restrict the display to open
or closed control objects only or to filter the contents of a particular column. In addition to the
basic life cycle data for control objects, the table shows data for the cumulated activity of each
control object, for example, the event count and the average event duration.

Different probes show different columns here, the process probe, for example, shows separate
sets of columns for read and write events. This information is also available if single event
recording is disabled. Just like for the events view, the total row at the bottom can be used
together with filtering to get cumulated data on partial sets of control objects.

109

G“‘\,"I'ln'le Line ﬂ Connections i Call Tree I, Hot Spot» JDBC 3

JDBC connections and execution of statements.

Both open and closed Filter in all text columns = b
D Connection String Start Time End Time Event Count Event Duration

1 jdbc:dema://remote_host/test 0:03.206 [Jul 25 1 12 1,118 ms
2 Jjdbc:demao://remote_host/test 0:03.516 [Jul 1 22 1,896 ms.
3 Jdbcidemoi/fremote_host/test 0:05.286 [Jul 1 18 13,674 ms
4 jdbcidemoi/fremote_host/test 0:05.376 [Jul 1 13 10,563 ms
5 jdbcidemo//remote_host/test 0:05.846 [Jul 1o 8 3,260 ms.
6 jdbcidemo//remote_host/test 0:08.996 [Jul 1. 12 968 ms!
7 jdbe:demo//remote_host/test 0:10.566 [Jul 1 g 743 ms.
g jdbodemo://remote_host/test 0:12.176 [Jul 1 15 11,323 ms
9 jdbc:dema://remote_host/test 0:15.006 [Jul 1 12 1,000 ms
10 jdbc:dema://remote_host/test 0:31.846 [Jul 25 1 & 4,20% ms
Total from 10 rows: 128 48,757 ms

A probe can publish certain properties in a nested table. This is done to reduce the information
overload in the main table and give more space to table columns. If a nested table is present,
such as for the file and process probes, each row has an expansion handle at the left side that
opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation actions.
For example, in the time line view, you can right-click a row and jump to each of the other views
so that only the data from the selected control object is displayed. This is achieved by filtering
the control object ID to the selected value.

Q}'TIITIE Line a Connections & Call Tree 1, Hot Spot » 1DBC 3

1DBC connections and execution of statements

Both open and closed Sort by start time ¥ >

Physical Connections 0:10 0:20 0:30 0:40 0:50

Jjdbc:demo://remote_host/test[/D 1] 1

|
I
a Show Selected Connection : I L Ll |
jdbc - 1.
Show Events For Selected Connection |
jdhel e un | nm [1f] III‘II n
jdbodermno:/fremote_host/test[ID 5]]]

R E u :I imm [1] LR 1]
I] !

Jjdbademo://remote_host/test[/D] |

jdbc:demo://remote_host/test[|D 7] 1 .

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded. For any
probe, the number of probe events per second and some average measure for probe events
like the average duration or the throughput of an I/O operation are available. For probes with
control objects, the number of open control objects is also a canonical telemetry. Each probe
can add additional telemetries, for example, the JPA probe shows separate telemetries for query
counts and entity operation counts.

110

‘ ﬁ Call Tree 1., Hot Spots ‘.‘ Connection Leaks . Telemetries » 1DBC g

JDBC connections and execution of statements.

Available probe telemetries: | Overview -

Overview
e Executed Statements
Average Statement Execution Time

Recorded Open Connections
E

Executed Statements

M

AN /_/\/

Row height: ——@ ja [

Average Statement Execution Time

Ll
AN

The hot spots view and the control objects view show cumulated data that can be interesting to
track over time. These special telemetries are recorded with the probe tracker. The easiest way
to set up tracking is to add new telemetries with the Add Selection to Tracker action from the hot
spots or control object views. In both cases, you have to choose if you want to track times or
counts. When tracking control objects, the telemetry is a stacked area graph for all different
probe event types. For tracked hot spots, the tracked times are split into the different thread
states.

B Tracker JPA/Hibernate

& Call Tree 1., Hot Spots . Telemetries Events)) o
JPA/Hibernate operations and statistics

Show: | [Hot spot times] Query: select o from Order o where o.date » = :date v | x

a RN frrrrrrr EEEERRERE frrererr frrorTrr EEREEEEN

800 ms 3

BDDmsi i

700 ms 3 i

600 ms 3

500 ms 3

400 ms 3

300 ms 3

200 ms 3

100 ms 3

B Runnable: 0ms =3 Waiting: 0 ms ™8 Blocked: Oms =3 Netl/O: Oms @ Total time: 0 ms p |_ _|

Probe telemetries can be added to the "Telemetries" section [p. 44] in order to compare them
to system telemetries or to custom telemetries. You then also have control over probe recording
with the context menu actions in the telemetry overview.

JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can expand
single events to see the associated JDBC events if the JDBC probe was recorded along with the
JPA probe.

111

. JPA/Hibernate
i Call Tree 1, Hot Spots ! Telemetries Events E Tracker 1A Hibarnate operstions and stEcetcs l’l
All types h Filter in all text columns = v
Start Time Event Type Duration Description Thread
0:03.234 [Jul 25 .50 Query 837 ms select o from Order o where o.date »>= :date Servlet request simulato...

JDBC [P tatement execution] 158 ms SELECT * FROM ORDER O WHERE O.DATE >= 7 Servlet request simulato...

JDBC [P tatement execution] 173 ms SELECT * FROM ORDER O WHERE O.DATE >= 7 Servlet request simulato...
0:04,092 [Jul .. % Inzert 99,206 ps com.ejt.demo.server.entities. Customer Servlet request simulate...
0:04.191 [Juf .. 4 Insert 224 ms com.ejt.demo.server.entities, Order Servlet request simulate...
0:04.427 [Juf .. 4 Insert 141 ms com.gjt.demo.server.entities.Customer Servlet request simulate...
0:04.368 [Ju . " Insert 210 ms com.ejt.demo.server.entities.Order Servlet request simulate...
0:09.014 [Jul . SO Query 701 ms select o from Order o where o.date »= :date Servlet request simulato...
0:09.716 [Ju . " Insert 128 ms com.ejt.demo.server.entities.Customer Servlet request simulato...
NG AAR 11 b Incert 151 ms ram eit demn cencer entities Order Servlet reaniest cirulatn

Total from 55 rows: 19,096 ms

+ Selection M Duration
Stack trace:

i_ Direct operation

javax.persistence. TypedQuery.getResultlist{)
com.gjt.demo.server.handlers.RequestHandler.executelpaCluery(javax. persistence.EntityManager)
com.ejt.demo.server.handlers.RequestHandler.makelpaCall()

Similarly, the hot spots view adds a special "JDBC calls" node to all hot spots that contains the
JDBC calls that were triggered by the JPA operation. Some JPA operations are asynchronous and
are not executed immediately, but at some arbitrary later point in time when the session is
flushed. When looking for performance problems, the stack trace of that flush is not helpful, so
JProfiler remembers the stack traces of where existing entities have been acquired or where
new entities have been persisted and ties them to the probe events. In that case, the back traces
of the hot spot are contained inside a node that is labeled "Deferred operations", otherwise a
"Direct operations" node is inserted.

. JPA/Hibernate
ok Call Tree 1, Hot Spots B Telemetries Events B Tracker 1A Hibernate operations and statitcs l‘l
Thread status: 0 Thread selection: Aggregation level:
O All states * ﬁ All thread groups v @ Metheds =
Hot Spot Time Average Time Events
2 Query: select o from Order o where o.date »= :date I 1 591 ms (69 %) 740 ms 17
P IDBC calls

_ W 2,804 ms - 17 evt. SELECT* FROM ORDER O WHERE O.DATE »= 7
| W £3.4% - 12,591 ms - 17 hot spot evt. Direct operations
1) e 0,43 - 12,591 ms - 17 hat spot evt. javax.persistence. TypedQuery.getResultList
() w943 - 12,591 ms - 17 hot spot evt. com.ejt.demo serverhandlers.RequestHandler.execute)paQuery
() m— 5 4% - 12,591 ms - 17 hot spot evt, com.ejt.dema.server.handlers.RequestHandler.makelpaCall
() 55,43 - 12,531 ms - 17 hot spot evt. com.gjt.demo.server handlers.RequestHandler.performWork
() mm— 59.4% - 12,591 ms - 17 hot spot evt. com.gjt.demo.server.handlers. RequestHandler.run
P / 9

G- 28.6% - 5,194 ms - 7 hot spot evt, HTTP: /demo/view4
al 12.8% - 2,314 ms - 3 hot spot evt. HTTP: /demo/view3
@™ 12.7% - 2,296 ms - 2 hot spot evt. HTTP: /demo/view5
Gl 8.2% - 1,434 ms - 2 hot spot evt. HTTP: /demo/view1
al 7.2% - 1,300 ms - 2 hot spot evt, HTTP: /demo/view2

4 Insert: com.ejt.demo.server.entities.Order I 3,239 ms (17 %) 190 ms 17
2 JDBC calls
% ™ 17.9% - 3,230 ms - 17 hot spot evt. Deferred operations
#a_Incart: com sit dema censer entities Cuctamer B 7 215 me (12 500 130 e 17
v

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else, either
on one or multiple other threads in the same JVM or in another process. For such probes, the
back traces in the hot spots are sorted into "Direct operations" and "Async operation" container
nodes.

A special problem in the JDBC probe is that you can only get good hot spots if literal data like IDs
is notincluded in the SQL strings. This is automatically the case if prepared statements are used,
but not if regular statements are executed. In the latter case, you will likely get a list of hot spots,
where most queries are executed just once. As a remedy, JProfiler offers a non-default option
in the JDBC probe configuration for replacing literals in unprepared statements. For debugging

112

purposes, you may still want to see the literals in the events view. Deactivating that option reduces
memory overhead, because JProfiler will not have to cache so many different strings.

@ Session Settings X

X Database probes for RDEMS, Big Data and NeSOL databases:
Application Settings

g JDBC [record events, annotate into call tree view]
Call Tree Recording Ensbled @
Record single events
Call Tree Filters Annctate JDBC calls in call tree
Recerd open virtual connections for connection leak analysis)

Resolve parameters of prepared statements for single events (7]

Trigger Settings
I Replace literals in unprepared :tatementsl (7]
Databases Keep literals for events view
"' JPA/Hibernate [record events, annotate into call tree view]
HTTP, RPC & JEE E MongoDE
VM & Custom Probes E Cassandra

OO0 W T 4

E HBase

g Advanced Settings

£

General Settings Copy Settings From “ Cancel

On the other hand, JProfiler collects the parameters for prepared statements and shows a
complete SQL string without placeholders in the events view. Again, this is useful when debugging,
but if you do not need it, you can switch it off in the probe settings in order to conserve memory.

JDBC connection leaks

The JDBC probe has a "Connection leaks" view that shows open virtual database connections
that have not been returned to their database pool. This only affects virtual connections that
are created by a pooled database source. Virtual connections block a physical connection until
they are closed.

4 Connections aCaHTreE 1., Hot Spots ? Connection Leaks * 1DBC g

JDBC connections and execution of statements

This view shows all virtual cennections that have been open for more than 10 secends, Virtual connections are what you get frem connection
pools and block a physical connection until they are closed.

Connections of type "Unclosed collected” are definite leaks while "Unclosed" connections are strong candidates,

All types v Filter in all text columns + L v
Opened At Open Since Type Description Thread Class Name
0:01.577 [Jul 25, 202... 18,472 ms| Unclosed c..jdbchsgldb:hsgl//localhost:9012/test [pool-1-thread-2 [m... [jdk.proxy2 $Proxy2

11,262 ms @ Unclosed c... jdbchsgldbihsql//localhost:3012/test pool-1-thread-2 [m... jdkproxy2 5Proxy2
3,055 ms @ Unclosed c... jdbchsgldb:hsgl://localhost:3012/test pool-1-thread-2 [rm... jdk.proxy2 SProxy2

Stack trace:

javax.sql.DataSource.getConnection()
jdbcJdbcTestWaorker.call()

jdbcJdbcTestWaorker.call)

Jjava.util.concurrent. ThreadPoolExecuterSWorker.run()

There are two types of leak candidates, "unclosed" connections and "unclosed collected"
connections. Both types are virtual connections where the connection objects that have been
handed out by the database pool are still on the heap, butcl ose() has notbeen called on them.
"Unclosed collected" connections have been garbage collected and are definite connection leaks.

113

"Unclosed" connection objects are still on the heap. The greater the Open Since duration, the
more likely such a virtual connection is a leak candidate. A virtual connection is considered as a
potential leak when it has been open for more than 10 seconds. However, cl ose() may still be
called on it, and then the entry in the "Connection leaks" view would be removed.

The connection leaks table includes a Class Name column that shows the name of the connection
class. This will tell you which type of pool has created the connection. JProfiler explicitly supports
a large number of database drivers and connection pools and knows which classes are virtual
and physical connections. For unknown pools or database drivers, JProfiler may mistake a physical
connection for a virtual one. Since physical connections are often long-lived, it would then show
up in the "Connection leaks" view. In this case, the class name of the connection object will help
you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled. There
is a separate recording button in the connection leaks view whose state corresponds to the
Record open virtual connections for connection leak analysis check box in the JDBC probe settings.
Just like for event recording, the state of the button is persistent, so if you start the analysis once,
it will automatically be started for the next probe recording session.

)) - v
P & t o4 tE 0 @2
8B T C % @
Start Stop Start _ Add e Stop Probe Stop || Freeze
lecordings Recordings Tracking | " O Bogkmark | PP cemng Help JDBC Lesks | View
. JDBC
4 Connections & Call Tree I, Hot Spots ? Connection Leaks * 3

JDBC connections and execution of statements

This view shows all virtual connections that have been open for more than 10 seconds. Virtual connections are what you get from connection
pools and block a physical connection until they are closed.

e U |

Payload data in the call tree

When looking at the CPU call tree, it is interesting to see where probes have recorded payload
data. That data may help you to interpret the measured CPU times. That is why many probes
add cross-links into the CPU call tree. For example, the class loader probe can show you where
class loading has been triggered. This is otherwise not visible in the call tree and can add
unexpected overhead. A database call that is otherwise opaque in the call tree view can be further
analyzed in the corresponding probe with a single click. This even works for call tree analyses
where the analysis is automatically repeated in the context of the probe call tree view when you
click on the probe link.

Thread status: 0 Thread selection: Aggregation level:
== Runnable - 88 All thread groups A @ Methods +

() m— 5.1% - 386 ms - 1 inv. jdbeJdbcDemeo.main
m- 37.8% - 280 ms - 5 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
@ B 37.8% - 279 ms - 5 inv. jdbcJdbcTestWorker.call
() = 37.3% - 279 ms - 5 inv. jdbcdbcTestWorker.call
D= 13.8%-102ms-12 inv, javax.sql.DataSeurce.getConnection
@ " 13.5% - 100 ms - 12 inv. jdbeJdbcTestWorker.testStatementsPath1
(@1 9.6%- 70,817 ps - 10 inv. jdbcJdbcTestWorker.testPreparedStaternent
@l 4,0% - 29,293 ps - 12 inv, jdbc)dbcTestWorker testStatement
¥ oM 3.6% - 27,021 ps - 22 inv. java.sql.Statement.executeQue
M |DBC calls Show in probe call tree
@ 0.3% - 1,888 ps - 12inv. java.sgl.Connection.createStatement
@ 0.0% - 65 ps - 10 inv. java.sql.Statement.close
@16.5%- 47961 ps- 10 inv. jdbcldbcTestWorker testStatementsPath2
0 39%-28755ps-1 inv. java.lang.System.gc
0.1% - 642 ps - 6 inv. java.sql.Connection.close
m 0.0% - 15 ps - 12 inv. java.lang. Thread.interrupted
@l 10.1% - 74,919 ps - 1inv, java.awt.EventDispatchThread .run

114

Another possibility is to show the payload information inline directly in the CPU call tree. All
relevant probes have an Annotate in call tree option in their configuration for that purpose. In
that case, no links into the probe call tree are available. Each probe has its own payload container
node. Events with the same payload names are aggregated, and the number of invocations and
total times are displayed. Payload names are consolidated on a per-call stack basis, with the
oldest entries being aggregated into an "[earlier calls]" node. The maximum number of recorded
payload names per call stack is configurable in the profiling settings.

Thread status: 0 Thread selection: Aggregation level:
== Runnable v | @8 All thread groups v | | (D Methods

0 . £0).5% - 30,857 ms - 7 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
n- 38.1% - 19,433 ms - 7 inv. com.ejt.demo.server.DemaeServers3.run
@™ 12.5% - 6,395 ms - 7 inv. HTTP: /demoy/viewd
@ ®12.5%- 6,395 ms - 7inv. com.ejt.demo.server.handlers.RequestHandler.run
(@®12.4% - 6,327 ms - 7 inv. com.ejt.deme.server.handlers RequestHandler.perfermiWork
@ 0.1%- 67,532 ps - Tinv. com.gjt.demo.server.handlers.RequestHandler.workWithGlebalResource
al 10.5% - 5,366 ms - 5 inv. HTTP: /demo/view5
@l 10.3% - 5,366 ms - 3 inv. com.gjt.dema.server.handlers.RequestHandler.run
@ W10.4% - 5,322 ms - 5 inv. com.ejt.demo.serverhandlers.RequestHandler.performWork
@17.3%-3,745ms - Sinv. com.gjt.dema.server.handlers.RequestHandler.makelpaCall
(@1 6.0% - 3,085 ms - 5 inv, com.ejt.demo.serverhandlers RequestHandler.executelpaQuery

0' 5.7% - 2,912 ms - 5 inv. 'avax.iersistance.TiiEdQueiietResultList

,Dl 2,912 ms - 5 evt, Query: select o from Order o where o.date >= :date
¥ IDBC calls
16,572 s - 5 evt, SELECT ™ FROM ORDER O WHERE O.DATE =7

@ 0.3% - 172 ms - 5 inv. com.gjt.mock.MockHelper.runnable

D 00%-65ps - 5inv. Jjavax.persistence EntityManager.createCuery

0 0.0% - 21 ps - 10 inv. java.util.Random.nextint

@ 0.0% - 13 ps - 3 inv, java.util List.size
W 13%-658ms-5 inv. javax persistence.EntityManager.flush
D 0.0%- 776 us - Sinv. com.gjt.mock.jpa.MockEntityManager. <init=>

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree. Rather,
they split the call tree for each different probe string. This is especially useful for server-type
probes, where you want to see the call tree separately for each different type of incoming request.
The "HTTP server" probe intercepts URLs and gives you fine grained control over what parts of
the URL should be used for splitting the call tree. By default, it only uses the request URI path
without any parameters.

€ Session Settings X
g

Probes for HTTP, RPC & JEE:
Application Settings

9 HTTP Server [record events]

- JNDI [record events, annotate into call tree view]
VM & Custom Probes

® JMS [record events, annotate into call tree view]

Advanced Settings «E’) RMI [record events]
(779 I

Tg Call Tree Recording Enabled
Record single events
T Call Tree Filters Show full URLs in events
URL splitting in the call tree: () Request URI path only
| Trigger Settings Resolve with serviet scripts: (7]
Resolve with generic scripts: (7]
Databases
; 9 HTTP Client
@ HTTP, RPC & JEE ‘3 Web Services [record events]

General Settings Copy Settings From “ Cancel

115

For more flexibility, you can define a script that determines the split string. In the script, you get

the current j avax. servlet. http. Ht pServl et Request as a parameter and return the
desired string.

@ Settings Edit Search Code Help Edit X
wh = . ¥
¥ B & PR & % O
e Shaw Modify Test
Undo Copy Cut B Find Replace | o\ ath Compile Help
::‘ Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that consists of regular Java
code. The following parameters are available:
JAVA
- com.jprofiler.api.agent.ScriptContext scriptContext
- javax servlet.http HttpSenetRequest servietReq
The expected return type is java.lang.String
Script:
s -]
1limport javax.servlet.http.HttpSession;
2
A

4 i

S HttpSession session = servletRequest.getSession(false);

6if (session !'= null) [

7 Object user = session.getAttribute ("user™);
g8 if (user !'= mull) |

g return user.toString():

10 1 else [

11 return "Unauthenticated”;

12 1

13] else |
14 return mull; Do not split

15}

What's more, you are not limited to a single splitting level, but can define multiple nested splittings.
For example, you can split by the request URI path first and then by the user name that is extracted

from the HTTP session object. Or, you can group requests by their request method before splitting
by the request URI.

@ Edit Serviet Scripts x

You can split requests on multiple nested levels. For example, you can split by the request method first
and then split by the request path.

The grouping expression for each level is defined by the return value of a script. When adding new
scripts, some example entries help you to get started.

Seript &
Edit Script
Edit Script x
import javax.serviet. hitp. HttpSession; [...] Edit Script

servletRequest.getRequestURI])

servietRequest.getMethod()

@ Help “ Cancel

By using nested splittings, you can see separate data for each level in the call tree. When looking
at the call tree, a level might get in the way and you would find yourself in need of eliminating it
from the "HTTP server" probe configuration. More conveniently and without loss of recorded

data, you can temporarily merge and unmerge splitting levels in the call tree on the fly by using
the context menu on the corresponding splitting nodes.

116

Thread status: o Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

0 W ().5% - 30,897 ms - 7 inv. java.util.concurrent. ThreadP oolExecutorSWorker.run
0- 38.1% - 19,433 ms - 7 inv. com.ejt.demo.server.DemaeServers3.run
@ " 12.5% - 6,395 ms - 7 inv. HTTP: /demoy/viewd
@ ®12.5%- 6,395 ms - 7inv. com.ejt.demo.server.handlers.RequestHandler.run
(@ ® 12.4% - 6,327 ms - 7 inv. com.ejt.deme.server.handlers.RequestHandler.performiVork

@ 0.1%- 67,532 ps - Tinv. cum.ejt.demu‘sewer.handlers.REiuestHandler.wurkWithGIUba\REsUurcE

Show Call Graph indlers.RequestHandler.run
I Show Threads rhandlers.RequestHandler.performWork
nandlers.RequestHandler.workWithGlobalResource
g Add Method Trigger
Add As Exceptional Method
d F
[Split Method with a 5 's.JdbclobHandler.run
¥
E Intercept Method With Script Probe rsdmsHandler.onMessage
L —_ nsHandlerSJmsType < clinit>
GI 2= Merge splitting level Crl+ Alt+ M |.questHandler.« clinit>
nsHandlerS)msTypevalues
[3= Remove Selected Sub-Tree Delete tHandlerSImsType.getDuration
® [Restore Removed Sub-Trees Cirl+Ale+5 sHandlerS)msType.getDestination
1 - .
Add Filter F Select
Do ilter From Selection iServer§181.run

@ Show Tree Legend

A R om ~roa 'D

Splitting the call tree can cause considerable memory overhead, so it should be used carefully.
To avoid memory overload, JProfiler caps the maximum number of splits. If the splitting cap for
a particular split level has been reached, a special "[capped nodes]" splitting node is added with
a hyperlink to reset the cap counter. If the default cap is too low for your purposes, you can
increase it in the profiling settings.

117

Garbage Collector Analysis

Understanding and analyzing the runtime characteristics of the garbage collector (GC) is important
for several reasons. Firstly, GC pauses can directly impact the responsiveness of your application.
By understanding how the garbage collector is performing, you can optimize its settings to reduce
these pauses. In general, frequent long GC cycles may indicate that the heap is too small, or that
too many temporary objects are being created.

With the help of the garbage collector probe you can solve these problems and make more
informed decisions when tuning your JVM settings, such as selecting the appropriate garbage
collector, heap size, or other JVM parameters.

The garbage collector probe has different views than the other probes and also uses a different
data source. It does not obtain its data from the profiling interface of the JVM but uses JFR

streaming to analyze GC-related events from the |DK flight recorder”. Because of the dependency
on JFR event streaming, the GC probe is only available when you profile Java 17 or higher on a
Hotspot JVM. When you open JFR snapshots [p. 216], the exact same probe is available, regardless
of the used Java version.

Garbage collections view

The main view in the garbage collector probe is the "Garbage collections" table. It shows all
recorded garbage collections as rows with their most important metrics as columns.

. . — = . . - Garbage Collector T3]
{? Garbage Collections M Telemetries £ GC Summary ¢ GC Cenfiguration [7] GC Flags € collections and configurason |
Filter in all text columns i
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
N 0:01.997.517 | 2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps 4 44 0 6
42 0:01.999.852 [J 22,885 ps G1 Evacuation .. G10Id 5,688 us 5,810 us 1 1 0
43 0:03.520.570 [J 1,365 ps 61 Humengou.. G1New 1,365 us 1,365 us 2 7 0 5.
44 0:03.521.951 [J 24,998 ps G1 Humongeu... G10Id 7477 us 7,632 us 0 7 0
45 0:03.655.470 [J 1,776 us G1 Evacuation .. G1New 1,776 us 1,776 us 3 34 o 3
A6 0:03.809.613 [1,672 ps G1 Evacuation .. G1New 1,672 ps 1,672 ps 1 0 0 3
a7 0:03.811.333 [19,640 ps G1 Evacuation ... G101d 4,167 ps 4,286 ps 0 0 0
43 0:03.881.874 [J 20,034 ps System.gc) G1Full 20,034 ps 20,034 ps & 1,691 0 34
a5 0:04.555.097 | 1,920 ps G1 Evacuation ... G1New 1,920 ps 1,920 ps 1 72 0 3
50 0:04.557.035 [. 20,714 ps G1 Evacuation ... G101d 3,917 ps 4035 ps o o o
51 0:05.606.811 [J 2,043 ps G1 Evacuation .. G1New 2,043 us 2,043 ps 4 46 0 1
52 0:05.772.998 [J 1,548 ps G1 Humengou.. G1New 1,548 us 1,548 us 4 13 0
33 0:05.774.563 [J 24,473 ps G1 Humongeu... G10Id 7,54 us 7,665 us o o o
54 0:05.885.318 [944 ps G1 Humongou.., G1MNew 844 ps 844 ps 0 0 0
55 0:05.886.278 [21,086 ps G1 Humongeu... G10Id 4,363 ps 4,447 ps 0 0 0
56 0:06.030.645 [1,033 ps G1 Humengou... G1New 1,093 ps 1,093 ps 0 0 0
57 0:06.031.711 [23,766 ps G1 Humongou... G10Id 6,388 ps 6,318 ps]]]
58 0:06.137.906 1.867 us G1 Humonaou... GTNew 1.867 us 1.867 us 0 0 0
Total from 112 rows: 1,618 ms 645 ms 152 12,588 4,731 3,33

The "Cause" column shows you why a garbage collection was triggered. For example, a call to
System gc() triggered a full garbage collection. You can see that from the associated "G1Full"
value in the "Collector" column. It also caused a substantial pause of 20 ms which is why it is
generally not a good idea to call Syst em gc() . Other causes trigger the collection of the young
generation space ("G1New") or the old GC collection of the G1 collector ("G10ld") that cleans up
unreferenced objects in the old generation. You can see that the old GC collections consistently
take longer than the young generation collections although the young generation collections
collect more objects.

Collected references with special GC handling are shown as "final", "weak", "soft" and "phantom"
references in separate columns.

The reason there are separate columns for the longest pause and the sum of pauses is that each
garbage collection is composed of multiple phases that produce separate pauses. Also, the

M https://en.wikipedia.org/wiki/|DK_Flight_Recorder

118

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

"Duration" of a garbage collection is not equal to the sum of pauses, because a garbage collection
only partially pauses the JVM while it is executing. You can see that the "G10Id" collections in
the screenshot only pause for about a fifth of their duration.

To inspect the various phases of a garbage collection, you can toggle the tree icon in the "GC ID"
column.

Garbage Collector II_T

GC collections and configuration

@ Garbage Collections P9 Telemetries fE6C Summary 13 GC Cenfiguration |Z| GC Flags

Filter in all text colurns

GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
Ll 0:01.997.517 [1... 2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps 4 44 0 6
42 0:01.999.852 [J... 22,885 ps G1 Evacuation ... G101d 5,688 ps 5,810 ps 1 1 o

Phase Level Duration Phase Name Committed metaspace: 38,392 kB — 58,438 kB (+0.1 %)
1 I /265 s (68 %) Class Unloading Class metzdatz 5650 kB — B650 kB (£095)
1 533 s (8%) Purge Metaspace Other data: 49741 kB — 40,807 kB +0.1%
1357 s (6 %) Reference Processing Used metaspace: 57,805 kB — 57,027 kB (+0.1 %)
2l 303 ps (4% Notlfj)r and ke.ep alive finalizable Class metsdate: 5365 KB — 8365 kB (205
10209 ps (3 %) Finalize Marking .
Other data: 49,530 kB — 49,562 kB +01%
10110 ps (1 %) 'Weak Processing
1099 ps (1 %) Finalize Concurrent Mark Cleanup Reserved metaspace: 1,124MB ~ 1,124 MB (+0 %)
1 7 ps (1% Reclaim Empty Regions Class metadata: 1,073 MB — 1,073 MB {0 %)
1] 49 s (0 %) Update Remembered Set Tracking Before Rebuild Other data: 50331 kB — 50.331 kB (£0%)
2| 47 us (0 %) Notify Soft/WeakReferences
2135 s (0%) Notify PhantomReferences Committed heap: 65011kB —65011kB (+0 %)
1] 34 ps (0 %) Flush Task Caches Used heap: 36,331 kB —36,331kB (x0%)
2 30us(0%) ClassLoaderData Reserved heap: 208 MB — 209 MB (+0 %)
1 2ps (0% Update Remembered Set Tracking After Rebuild
Total from 112 rows: 1,618 ms 645 ms 152 12,588 4731 3,33

In the screenshot above, a mixed GC collection of the G1 collector ("G10Id") was expanded. You
can see that most of the time is spent in "Class Unloading", which does not pause the JVM. On
the right, you can see further statistics for the garbage collection. Here, the used heap stayed
the same while the used metaspace went up by 0.1%.

Garbage Collector II_T

GC collections and configuration

{9 Garbage Collections M Telemetries F36C Summary [GC Cenfiguration E| GC Flags

Filter in all text columns

GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs

47 0:03.811.333 [J... 19,640 ps G1 Evacuation .. G10Id 4167 us 4,286 us 0 0 0

48 0:03.881.874 [)... 20,034 ps System.gc() G1Full 20,034 ps 20,034 ps] 1,601 0 34

Phase Level Duration Phase Name Committed metaspace: 59,965 kB — 53,965kB (+0 %)

1 I 11,366 s (48 %) Phase 1: Mark live objects Class metadatz E716 kB — BTI6 kB (£0 %)

2 G577 s (27 %) Phase 1: Class Unloading and Cleanup Other data 51,248 kB — 51,240 kB (£0%)

1 3,532‘“(15%) Phase 3: Adjust pointers Used metaspace: 50485 kB — 59486KE (£0%)

Tl 822 ps (3 %) Phase 2: Prepare for compaction Class metsdats 5453 kB — 8453 kB (205

1 905 ps (3 %) Phase 4: Compact heap Other date 54003 KB — 54,003 kB (03

21195 ps (0 %) Phase 1: Reference Processing o - - e

21130 s (0 %) Phase 1: Weak Processing Reserved metaspace: 1,132 MB = 1,132 MB (0 %)

Class metadata: 1073 MB — 1.073 MB {£0 %)

Other datz 58720 kB — 58720 kB {£0 %)

Committed heap: 70,234 kB = 70,254 kB (0 %)

Used heap: 44714 kB - 37,705 kB (-13.7 %)

Reserved heap: 209 MB — 209 MB (0 %)

49 0:04.555.007 [J... 1,920 ps G1 Evacuation ... G1New 1,920 ps 1,920 ps 1 72 o 3

Total from 112 rows: 1,618 ms 645 ms 152 12,588 4,731 3,53

The phases of each collector are different. In the screenshot above, a full collection is shown. It
spends a lot of time marking live objects in the entire heap. At the end of the collection, the used
heap was reduced by 15.7%, while the metaspace remained the same.

While analyzing garbage collections, filtering is an important tool to compare different subsets
of garbage collections. At the top of the table, there is a filter selector that lets you choose any
column and configure a corresponding filter. An easier way to see similar garbage collections is
to use the context menu on the table and select a filter condition based on the column values
in the selected row.

119

@ Garbage Collections P9 Telemetries __z GC Summary T3 GC Cenfiguration GC Flags Garbage Collector U

GC collections and configuration

Phantom Refs v |z h 65 | ¥ + Add
Duration = 2,265 ps Phantom Refs = 63
GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
N 0:01.997.517 [1... 2,265 ps G1 Evacuation ... G1New 2,265 ps 2,265 ps 4 44 0 65
43 PRt Sum R g . G1Full 20,034 ps 20,034 ps 6 1,691 0 344
177 Filter Equals This GCID G1Full 40,249 ps 40,249 ps 10 2139 0 369
123 Filter Greater Than This Duration G1Full 43,426 ps 43,426 ps 10 2432 1,113 304
12¢ . G1Full 35,537 us 35,537 us 3 2,431 229 394
Filter Less Than Th C
134 [Ter e han e ause 51New 2,398 ps 2,398 ps 17 5 0 78
Collect: 5
15 Sort Garbage Collections b ollector G1Full 76,258 ps 76,258 ps 2 2,223 1,062 421
p Find Ctrl+F Longest Pause
Sum of Pauses
T Export View Ctri+R Final Refs
Weak Refs
Soft Refs

Phantorn Refs

Total from 7 rows: 220 ms 220 ms 63 11,006 2,404 1,975

You can add multiple filters to narrow down the garbage collections of interests. Active filters
are shown as labels at the top of the table. It is also possible to add filters from the nested GC
phases tables.

Garbage Collector

GC collections and configuration

@ Garbage Collections M Telemetries fE 6 Summary [GC Cenfiguration GC Flags

GCID h] i

| Purge Metaspace = 533 ps I

GCID Start Time Duration Cause Collector Longest Pause Sum Of Pauses Final Refs Weak Refs Soft Refs Phantom Refs
42 0:01.999.852 [J... 22,885 ps 61 Evacuation .. G10Id 5,688 us 5810 us 1 1 0
44 0:03.521.951 [J... 24,998 ps G1 Humongeu... G10Id 7477 us 7,632 us 0 7 0
Phase Level Duration Phase Name Committed metaspace: 58,916 kB — 58,982 kB (+0.1 %)
1 I 6,204 s (819%) Class Unloading Class metadate: 8650 kB — £650 kB
S e - EEE—— Cther dat 50265 kB — 50331 kB)
Filter Garbage Collections With This Phase And a Longer Duration Used metaspace: 58,425 kB — 58,479 kB %)
Filter Garbage Collections With This Phase And a Shorter Duration |k Cleanup Class metad £395 kB — 5401 kB)
Sort Phases » Other dar: 50,027 kB — 50,078 kB 5)
T e s %) Reclairm Empty Regions Reserved metaspace: 1,124 MB — 1,124 MB (0 %)
1] 82 ps (1 %) Update Remembered Set Tracking Before Rebuild Class metad, 1073 MB ~ 1.073 MB (£0 %)
2 39ps (0 %) Notify Soft/WeakReferences Cther datz 50331 kB — 50331 kB (£0 %)
2 33 us(0%) Motify PhantomReferences
1 19 s (0%) Flush Task Caches Committed heap: 65,011 kB — 70,254 kB (+2.1 %)
2 15us (0 %) ClassLoaderData Used heap: 36,680 kB — 40,883 kB (+11.4 %)
1 2ps (0%) Update Remembered Set Tracking After Rebuild Reserved hean: 209 MB — 209 MB (£0 %]
Total from 33 rows: 1,181 ms 305 ms 2 19 2327 .
Telemetries

The GC probe produces a number of telemetries which are available in the "Telemetries" probe
view.

120

. o) = . . Garbage Collector 7]
Q’/\GarbageCoHe(t\ons 8 Telemetries LZ GC Summary % GC Configuration GC cotections 2nd configuraton 14
Available probe telemetriess | Owverview -
-
......... T O A I NI L L B T LA I A I B B B B S B A S
00 0:20 0:30 0:40 50
%0 m
Longest pause R A
Oms | N | s = s L s |

200 ms
Sumn of pauses ‘ ‘
g v | ‘ -
300 MB
Used Heap . L AN N e S

OME

300 ME

Committed Heap

100MB

Used Metaspace

Row height: @ }9 ko X

If you are interested in minimizing GC pauses, the "Longest pause" telemetry at the top will be
the most interesting one. You can drag along the time axis of the telemetry to select the
corresponding garbage collections in the "Garbage Collections" view. For better vertical resolution,
you can select a single telemetry from the drop-down at the top or by clicking on the name of
the telemetry.

. — — . . Garbage Collector T3]
¢ Garbage Collections B Telemetries L2 GC Summary %4 GC Configuration € colections and configuration |
(3 Available probe telemetries: | Sum of pauses hd

a [T Jrrrrrn Jrrrrrn frrrrir [R A BRI A B A B A R Jrrrrrr
0:10 0:20 30 040 050 1:00

|
5
200 ms I

0:07.0 [Jul 3, 2023 11:01:11 AM] = 2000 ms

100 ms = Sum of pauses: 107.7 ms

B Sum of pauses: 8.07 ms ja [

In the screenshot above you can see the sum of pauses over time. JProfiler presents summable
measurements by building a histogram of the recorded data. The bin width depends on the
available horizontal space, so histogram bins will change depending on the zoom level and, if
"scale to fit" is enabled, depending on the width of the window. What stays the same is the total
area under all histogram bins.

The heap and metaspace telemetries are based on the statistics that you can see when
expanding a garbage collection. This means that the data is not regularly sampled like for the
memory telemetries in a full profiling session. If no garbage collection occurs during a time
period, there will be no data. For a JVM with little allocation activity, there can be long stretches
along the time axis where the graph is just interpolated between two garbage collections.

Each of these telemetries has two data lines: "Before GC" and "After GC". The differences are
typically large for the "Used Heap" telemetry. At each time, you can see how much work the
garbage collection has performed by comparing the values of the two data lines. You can look

121

at the tooltip to get the precise values. For the "Committed heap" telemetry and the metaspace
telemetries, the differences between both lines will often be small.

If you are analyzing a JFR snapshot [p. 216], the same data from the j dk. GCHeapSunmary JFR
eventtypeis also usedin the "Memory" telemetry in the telemetry section. In that case, however,
both the "Before GC" and "After GC" values are shown in the same data line and data is not
aggregated to a once per-second granularity as in the GC probe telemetries, so the graph will
look different.

GC Summary

The GC summary shows you measurements that are aggregated over the entire recording period.
Each measurement provides the number of garbage collections, as well as the average, maximum
and the total values. The most important data at the top are the "Pause times" that directly affect
the liveness of your application.

Q(»\ Garbage Collections P8 Telemetries _z GC Summary W GC Configuration e m"mi(:f:ra?ff:;g::;‘: ‘_:r
Pause Times
Pause Count 143
Average Pause 4512 ps
Maximum Pause 76,258 ps
Sum of Pauses 643 ms
All Collections Total Times
Average GC Time 14,451 ps
Maximum GC Time 76,258 ps
Total GC Time 1,618 ms
Young Collections Total Times
GC Count 70
Average GC Time 1,712 us
Maximum GC Time 3,460 ps
Total GC Tirne 118 ms
Old Collections Total Times
GC Count 42
Average GC Time 35,682 us
Maximum GC Time 76,258 us
Total GC Time 1,498 ms

The other top-level category shows the total times of all collections which is then split into two
subcategories for young and old collections.

GC Configuration

When you tune your garbage collector, you may want to inspect the common properties that
can either be set explicitly or that are set implicitly by the garbage collector itself.

122

Garbage Collector "I_|I
|

@ i En [F 1 = TN
Q'\ Garbage Collections M Telemetries £ GC Summary % GC Configuration GC cotections 2nd configuraton

GC Configuration

Young Garbage Collector GlNew
Old Garbage Collector G10Id
Concurrent GC Threads 3
Parallel GC Threads 13
Concurrent Explicit GC false
Disabled Explicit GC false
Uses Dynamic GC Threads true

GC Time Ratic 12

GC Heap Configuration

Initial Size 209 MB
Minimum Heap Size 8383 kB
Maximum Heap Size 209 MB
If Compressed Oops Are Used true
Compressed Oops Mode 32-bit
Heap Address Size 32
Object Alignment 8 bytes
Young Generation Configuration

Minimum Yeoung Generation Size 1,363 kB
Maximum Young Generation Size 125 MB

These properties are common to all garbage collectors and help you understand the differences
between garbage collectors.

GC Flags

Finally, the GC-specific flags give you an idea what properties of a garbage collector can be tuned
and lets you check their actual values.

4 ! Telemetries fF6c Summary W 6 Coenfiguration GC Flags o 'alle-ti(::-r?ragicr‘;:iff:: :‘I
-
Flag Name Flag Value Origin

AlwaysPreTouch false Default
ClassUnloading true Default
ClassUnloadingWithConcurrentMark true Default
G1ConcMarkStepDurationMillis 10.0 Default
G1ConcRSHotCardLimit 4 Default
G1ConcRSLogCacheSize 10 Default
G1ConcRefinementGreenZone 0 Default
G1ConcRefinementRedZone 0 Default
G1ConcRefinernentServicelntervalMillis 300 Default
G1ConcRefinementThreads 13 Ergenomic
G1ConcRefinementThresheldStep 2 Default
G1ConcRefinementYellowZone 0 Default
G1ConfidencePercent 50 Default
G1DummyRegionsPerGC 0 Default
GlEvacuationFailureAlot false Default
GlEvacuationFailureALotCount 1000 Default
G1EvacuationFailureALotDuringConcMark true Default
G1EvacuationFailureAlotDuringConcurrentStart true Default
G1EvacuationFailureALotDuringMixed GC true Default

L TS Y BT SO VAP P At

The "Origin" column shows you how the flag was set. "Default" values have not been modified
from the standard settings while "Ergonomic" flags have been adjusted automatically by the
garbage collector. If you set specific GC flags on the command line, they will be reported as
"Command line" in origin.

123

MBean Browser

Many application servers and frameworks such as Apache Camel'” use JMX to expose a number
of MBeans for configuration and monitoring purposes. The JVM itself also publishes a number
of platform MxBeans “’ that present interesting information around the low-level operations in
the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM. The
remote management level of JMX for accessing MBean servers is not required, because the
JProfiler agent is already running in-process and has access to all registered MBean servers.

JProfiler supports the type system of Open MBeans. Besides defining a number of simple types,
Open MBeans can define complex data types that do not involve custom classes. Also, arrays
and tables are available as data structures. With MXBeans, JMX offers an easy way to create
Open MBeans automatically from Java classes. For example, the MBeans provided by the JVM
are MXBeans.

While MBeans have no hierarchy, JProfiler organizes them into a tree by taking the object domain
name up to the first colon as the first tree level and using all properties as recursively nested
levels. The property value is shown first with the property key in brackets at the end. The t ype
property is prioritized to appear right below the top-level node.

Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

'!:!' Live Memory b [Attributes {8F Operations
com.gjt.dema
.'ﬁ Heap Walker com.jprofiler.api.agent.m v
com.sun.management
java.lang MName . Value
I CPU Views GarbageCollector [t ¥ HeapMemorylsage [[java.lang.management.MemoryUsage]
. committed 58720256
MemoryManager [typ o
— MemoryPoal [type] init 1073741824
L Threads ®c L'yd_ - Pel o 17146314752
dJ asstoading Pl used 16235800
(o) I e e Compilation [type] NonHeapMemory... [java.lang.management.MemoryUsage]
1 BRI = I ObjectName javalangitype=Memory
“"] OperatingSystem [ty ObjectPendingFin.. 0
; Databases “"'] Runtime [type] Verbose false Id
@ Threading [type]
java.nio
@ HTTP, RPC & JEE java.util.logging

Jdk.management.jfr

VM & Custom Probes

P
Smms MBeans
upr

The following data structures are shown as nested rows:

* Arrays

Elements of primitive arrays and object arrays are shown in nested rows with the index as
the key name.

+ Composite data

All items in a composite data type are shown as nested rows. Each item can be an arbitrary
type, so nesting can continue to an arbitrary depth.

M https://camel.apache.org/camel-jmx.html
) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

124

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

* Tabular data

Most frequently you will encounter tabular data in MXBeans where instances of j ava. uti | .
Map are mapped to a tabular data type with one key column and one value column. If the type
of the key is a simple type, the map is shown "inline", and each key-value pair is shown as a
nested row. If the key has a complex type, a level of "map entry" elements with nested key
and value entries is inserted. This is also the case for the general tabular type with composite
keys and multiple values.

Optionally, MBean attributes can be editable in which case an - edit icon will be displayed next
to their value and the Edit Value action becomes active. Composite and tabular types cannot be
edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

@ Edit Attribute Value X

EditableObjecthame null

Array elements are separated by semicolons. One trailing semicolon can be ignored, so 1 and
1; are equivalent. A missing value before a semicolon will be treated as a null value for object
arrays. For string arrays, you can create empty elements with double quotes ("") and elements
that contain semicolons by quoting the entire element. Double quotes in string elements must
be doubled. For example, entering a string array value of

"Test";"";;"enbedded "" quote";"A B";;
creates the string array
new String[] {"Test", "", null, "enbedded \" quote", "A;B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you define
an MBean telemetry line [p. 44] for a custom telemetry, an MBean attribute browser will be
shown that lets you choose an attribute that provides the telemetry data. When you are already
working in the MBean Browser, the Add Telemetry For Value action in the context menu provides
a convenient way to create a new custom telemetry.

125

com.gjt.deme

com jprofiler.api.agent.mbean

com.sun.management

Jjava.lang
GarbageCollector [type]
MemoryManager [type]
MemoryPool [type]

[] ClassLoading [type]

@ Compilation [type]

& Memory [type]

@ OperatingSystem [type]

.ﬂ} Runtime [type]

(] Threading [type]

Jjava.nio

java.util.logging

Jjdk.management.jfr

[Attributes @ Operations
-
MName Value
HeapMemorylsage [java.lang.management.Memorylsage]
committed 58720256
init 1073741824
max FESPPESPETE)
uced Edit Attribute Value
NOI"IHEapMIE Add Telemetry For Value VlemoryUsage]
ObjectNam
ObjectPend ,O Find Ctrl+F
Verbose < Show Row Details Ctrl+Alt+] 7
L Export View Ctrl+R

Atelemetry can also track nested values in composite data or tabular data with simple keys and
single values. When you chose the nested row, a value path is built where path components are

separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface that are

not setters or getters.

com.gjt.deme

@ StandardTest [type]

.ﬂ} Test [type]

com, jprofiler.api.agent.mbean

com.sun.management

(] DiagnosticCormnmand [type]

@ HotSpotDiagnostic [type]

java.lang
GarbageCollector [fype]
MemoryManager [type]
MemoryPool [type]

.ﬂ} ClassLoading [type]

@ Compilation [type]

d} Memory [type]

@9 OperatingSystem [type]

d} Runtime [type]

.ﬂ} Threading [type]

Jjava.nio

Jjava.utillogging

Jjdk.management.jfr

[Attributes @ Operations

Operation
dumpHeap(java.lang.5tring pl, boolean pl1) — void
getVMOption(java.lang.5tring pl) — [Composite]
setVMOption(java.lang.5tring p0, java.lang.String ||

Invoke Operation

2 Find Ctri+F

T Export View Ctrl+R

The return value of an operation may have a composite, tabular or array type, so a new window
with a content similar to the MBean attribute tree table is shown. For a simple return type, there
is only one row named "Return value". For other types, the "Return value" is the root element

into which the result is added.

126

@ Operation Result X

Name Value
Return value [com.sun.management.VMOption]
name HeapDumpOnOutOfiemoryError
origin DEFAULT
value false
writeable true

MBean operations can have one or more arguments. When you enter them, the same rules and
restrictions apply as when editing an MBean attribute.

@ Enter Operation Parameters X
java.lang.String p0 | HeapDumpOnOutOfiviemoryError null
java.lang.String p1 | true null

127

Offline Profiling

There are two fundamentally different ways to profile an application with JProfiler: By default,
you profile with the JProfiler GUI attached. The JProfiler GUI provides you with buttons to start
and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze the
results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows you to
start the profiled application with the profiling agent but without the need to connect with a
JProfiler GUL.

However, offline profiling still requires some actions to be performed. At least one snapshot has
to be saved, otherwise no profiling data will be available for analysis later on. Also, to see CPU
or allocation data, you have to start recording at some point. Similarly, if you wish to be able to
use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the API, you can programmatically
invoke all profiling actions in your code. In the api / sanpl es/ of f| i ne directory, there is a
runnable example that shows you how to use the controller APl in practice. Execute . . / gr adl ew
in that directory to compile and run it and study the Gradle build file bui | d. gr adl e to understand
how the test program is invoked.

The Controller APl is the main interface for managing profiling actions at run time. It is contained
in bi n/ agent . j ar inyour JProfiler installation or as a Maven dependency with the coordinates

group: comjprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository
https://maven. ej -t echnol ogi es. conl reposi tory

If the profiling APl is used during a normal execution of your application, the API calls will just
quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the class path
of your application during development, add profiling instructions to your source code and
recompile your code each time you make a change to the programmatic profiling actions.

Triggers

With triggers [p. 26], you can specify all profiling actions in the JProfiler GUI without modifying
your source code. Triggers are saved in the JProfiler config file. The config file and the session
ID are passed to the profiling agent on the command line when you start with offline profiling
enabled, so the profiling agent can read those trigger definitions.

128

@ Session Settings X

X Triggers defined for the current session:
Application Settings

: Method invocation +
" bezier.BezierAnimSDemoControls.actionPerformed (java.awt.event. ActionEvent) i
Call Tree Recording .
e Timer x
. Interval 10 minutes, offset 10 minutes
Call Tree Filters
’ CPU load threshold
1L 80% CPU load
| Trigger Settings " o2
. Heap usage threshold
; b7
Triggers T 20% of maximum heap size
Output
; Databases
@ HTTP, RPC & JEE
N
o J¥M & Custom Probes W
General Settings Copy Settings From “ Cancel

In contrast to the profiling API, where you add API calls to your source code, triggers are activated
when a certain event occurs in the JVM. For example, instead of adding an API call for a certain
profiling action at the beginning or at the end of a method, you can use a method invocation
trigger. As another use case, instead of creating your own timer thread to periodically save a
snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs. Some of
these actions correspond to profiling actions in the controller API. In addition, there are other
actions that go beyond the controller functionality such as the action to print method calls with
parameters and return values or the action to invoke interceptor scripts for a method.

@ Trigger Wizard - Method invocation X
1. Trigger type Configure actions for this trigger
2. Specify methods
3. Actions Configured actions:
4.0 t
escrption 9 Print method invocation +
5. Group 1D
6. Finished E = I x
£ Run interceptor script
On methed entry:
On methed exit:
On exception exit:
N
4 Back Next P Finish Cancel

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline session by
invoking Session->Conversion Wizards->Convert Application Session To Offline from the main menu.
This will create a start script with the appropriate VM parameters and take the profiling settings
from the same session that you use in the JProfiler Ul. If you want to move the invocation to
another computer, you have to use Session->Export Session Settings to export the session to a
config file and make sure that the VM parameter in the start script references that file.

129

@ Convert local session to offline session >

1. select local session Check required actions

2, Offline profiling

3. Locate output directory The conversicn wizard has finished collecting all necessary infermation and is
4. Check actions now about to execute the required actions.

5. Finished

Please check the summary below.

Conversion type: Convert local session to offline session
Application sessicn: Animated Bezier Curve Demo
Output directory: C\Users\ingo

For offline profiling, a start script named start_session_offline_101.bat

will be created in the output directory. Use this start script to start offline
profiling.

4 Back Mext P Finis Cancel

When profiling an application server with the integration wizards, there is always a start script
or config file that is being modified so that the VM parameters for profiling are inserted into the
Java invocation. All integration wizards have a "Profile offline" option on the "Startup" step in
order to configure the application server for offline profiling instead of interactive profiling.

€ Integration Wizard X
1. Choose wizard Choose whether to wait for the JProfiler GUI

2. Local or remote

3. Profiled JVM Please choose whether you would like your profiled VM to wait for a

4. Startup mode connection from the JProfiler GUI frontend before starting up:

Wait for a connection from the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUI at
startup. With this option you can profile the startup phase of your
application,

Startup immediately, connect later with the JProfiler GUI

[Easy] Profiling settings are transmitted directly by the JProfiler GUl ence
you connect.

I() Profile offline, JProfiler GUI cannot (onﬂectl

[Advanced] You have te configure triggers that record data and save
snapshots that can be opened with the JProfiler GUI later on.

4 Back Next P Finis Cancel

You may want to pass the VM parameter yourself to a Java call, for example, if you have a start
script that is not handled by the integration wizards. That VM parameter has the format

-agentpath: <path to jprofilerti l|ibrary>=offline,id=<ID>[, config=<path>]

and is available from the [Generi ¢ appli cati on] wizard.

Passing of f | i ne as a library parameter enables offline profiling. In this case, a connection with
the JProfiler GUI is not possible. The sessi on parameter determines which session from the
config file should be used for the profiling settings. The ID of a session can be seen in the top
right corner of the Application settings tab in the session settings dialog. The optional confi g
parameter points to the config file. This is a file that you can export by invoking Session->Export
Session Settings. If you omit the parameter, the standard config file will be used. That file is located
inthe . j profil er 14 directory in your user home directory.

130

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is shown
below:

pl ugi ns {
id "'comjprofiler' version 'X Y.Z
id'java'
}
jprofiler {
instalIDir = file('/opt/jprofiler")
}

task run(type: comjprofiler.gradle. TestProfile) {
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

Thecomjprofiler.gradl e.JavaProfil e task profiles any Java class in the same way that
you execute it with the standard JavaExec task. If you use some other method of launching
your JVM that is not directly supported by JProfiler, the comjprofiler.gradle.
Set Agent Pat hPr oper ty task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

set Agent Pat hProperty {
propertyName = 'agent Pat hProperty
offline = true
configFile = file("path/to/jprofiler_config.xm")
sessionld = 1234

and then use agent Pat hPr oper t y as a project property reference elsewhere after the task has
been executed. The features of all Gradle tasks and the corresponding Ant tasks are documented
in detail in separate chapters [p. 246].

Enabling offline profiling for running JVMs

With the command line utility bi n/ j penabl e, you can start offline profiling in any running JVM
with a version of 1.6 or higher. Just like for the VM parameter, you have to specify an of f | i ne
switch, a session ID and an optional config file:

j penable --offline --id=12344 --config=/path/to/jprofiler_config.xmn

With an invocation like this, you have to select a process from a list of running JVMs. With the
additional arguments - - pi d=<PI D> - - noi nput other you can automate the process so that
it requires no user input at all.

On the other hand, when enabling offline profiling on the fly, it may be necessary to manually
start some recordings or to save a snapshot. This is possible with the bi n/j pcontrol |l er
command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched on and soj pcont r ol | er will not be able to connect. This includes the

131

case where you enable profiling with j penabl e, but without the of f| i ne parameter. If you
enable offline mode, the profiling settings are specified and j pcont rol | er can be used.

More information onthej penabl e andj pcont r ol | er executables is available in the command
line reference [p. 246].

132

Comparing Snapshots

Comparing the runtime characteristics of your current application against a previous version is
a common quality assurance technique for preventing performance regressions. It also can be
helpful for solving performance problems within the scope of a single profiling session, where
you may want to compare two different use cases and find out why one is slower than the other.
In both cases, you save snapshots with the recorded data of interest and use the snapshot
comparison functionality in JProfiler by invoking Session->Compare Snapshots in New Window from
the menu or clicking the Compare Multiple Snapshots button on the Open Snapshots tab of the
start center.

@ JProfiler Start Center X

Start Center

Open a Single Snapshot

r
Open Use this option to analyze a snapshot in detail. All views are available just like for a live profiling session.
Session
w Recent Snapshots
a Use this option to re-open a recently opened snapshot.
Quick I Compare Multiple Snapshots
Attach

Use this option to compare certain aspects of different snapshots. JProfiler will switch to the snapshot
Or= comparison window.

MNew
Session

Open
Snapshots

Start Close

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a number
of snapshots in the snapshot selector. Then you can create comparisons from two or more of
the listed snapshots by selecting the snapshots of interest and clicking on a comparison tool bar
button. The order of the snapshot files in the list is significant because all comparisons will
assume that snapshots further down in the list have been recorded at a later time. Apart from
arranging snapshots manually, you can sort them by name or creation time.

» . x »
4 & = e > o
Memory U Telernetry Prote Start o @ o
ars aris s Center
Available Snapshots o ||]2
serverl.jps Sort By Creation Time
2019-03-22 11:11:54 Sort By Marme

server2.jps
2019-03-22 11:11:54

server3.jps
2019-03-22 11:11:54

Unlike for the views in JProfiler's main window, the comparison views have fixed view parameters
that are shown at the top instead of drop-down lists that let you adjust the parameters on the
fly. All comparisons show wizards for collecting the parameters for the comparison, and you can

133

perform the same comparison multiple times with the same parameters. The wizards remember
their parameters from previous invocations so you don't have to repeat the configuration if you
compare several sets of snapshots. At any point, you can shortcut the wizard with the Finish
button or jump to another step by clicking on the step in the index.

When a comparison is active, the snapshots that were analyzed are shown with number prefixes.
For comparisons that work with two snapshots, the displayed differences are the measurements
from snapshot 2 minus the measurements from snapshot 1.

S I\) 0\

Memory cPU Telemetry Probe

Available Snapshots |]2
1 | serverl.jps
_) 2018-03-22 11:11:54
2 | server2jps
) 2019-03-22 11:11:54

server3.jps
2019-03-22 11:11:54

For the CPU comparisons, you can use the same snapshot as the first and second snapshot and
select different threads or thread groups in the wizard.

L CPU Comparison Wizard - Call tree comparison X
1. Choose comparisen type Choose the threads that should be compared
2. Select snapshots
3. Thread selection Please choose the thread for the comparison:
4, View parameters
First snapshot: @ Serviet request simulator 1 [main] A
Second snapshot: Same as for first snapshot
C) Different thread
@ Servlet request simulator 2 [main]
4 Back Next P Finish Cancel

Comparisons with tables

The simplest comparison is the "Objects" memory comparison. It can compare data from the
"All objects", "Recorded objects" or the "Classes" view of the heap walker. The columns in the
comparison show differences for instance counts and size, but only the Instances Count column
shows the bidirectional bar chart where increases are painted in red and to the right, while
decreases are painted in green and to the left.

134

T File View Window Help Snapshot Comparisen - JProfiler [m] X
1Y LY LY 1Y f —
4 8§ ®m e = e
Memory PU Telemetry Probe Start View
Comparison Comparisan Comparison Compari Center | TP Gusings | TP
Available Snapshots 4=]% Objects comparison
serverl.jps Aggregation: Classes
2019-03-22 11:11:54 Objects: All ohjects
1 server2.jps Mame Instance Count Size @
2019-03-22 11:11:54 char[] +15,808 (+46 %) +2,789 kB
serverd.jps javalang.5tring +6,984 (+27 %) +167 kB
2 2019-02-22 11:11:54 java.util HashMapSNode +5,267 (+43 %) +168 kB
- — com.sun.org.apachexerces.internal xni.QMame +4,740 (+95 %) +132 kB
java.lang.Object[] +2,695 (+36 %) +209 kB
java.lang.StringBuilder +1,765 (+115 %) +42,360 bytes
java.lang.String[] +1,624 (+58 %) +150 kB
com.sun.org.apachexerces.internal.util. Symbo... +1,305 (+91 %) +41,760 bytes
int[] +1,175 (+36 %) +584 kB
com.sun.org.apachexerces.internal.util XMLStr... +1,080 (+95 %) +25,920 bytes
byte[] +1,050 (+48 %) +2,716 kB
com.sun.org.apachexerces.internal xni XML5tr.., +990 (+95 %) +23,760 bytes
short]] +852 (+99 %) +42,960 bytes
java.util. HashMap +797 (+24 %) +38,256 bytes
java.util. HashMapShode[] +786 (+25 %) +88,360 bytes
com.sun.ora.apachexerces.internal.utils XMLS... B +630 (+112 %) +30.240 butes
Total from 313 rows: +72,286 (+48 %) +8,242 kB
v @
= X A B Cormparison1 | Comparison 2

In the view settings dialog you can choose whether you want this bar chart to display absolute

changes or percentages. The other value is displayed in parentheses. This setting also determines

how the column is sorted.

T Objects Comparison View Settings

Size Scale

O Automatic &

Mixed units

Primary Measure

O Instance count

Shallow size

Differences of Primary Measure

o Sort by values

Sort by percentages

Show zero difference values 0

MB kB bytes

Only show classes that appear in both snapshots

Cancel

The measurement in the first data column is called the primary measure, and you can switch it
from the default instance counts to shallow sizes in the view settings.

135

T File View Window Help

The context menu of the table gives you a shortcut into the other memory comparisons with

the same comparison parameters and for the selected class.

Objects comparison

Aggregation: Classes

Snapshot Comparisen - JProfiler - [m] X
1Y LY LY 1Y @ —
4 § ®m o > (7]
Memory PU Telemetry Probe Start View
s i s s Center | DT Gapings NP
Available Snapshots 4=]% Objects comparison
serverljps Aggregation: Classes
2019-03-22 11:11:54 Objects: All ohjects
server2.jps Mame Size Instance C... 0
2019-03-22 11:11:54 charl | +2,789 kB (+67 %) +15,808
server3.jps byte[| +2,T16 kB (+77 %) +1,050
2019-03-22 11:11:54 int[] +384 kB (+8 %) +1,175
— java.lang.Object]] +200 kB (+43 %) +2,603
java.util. HashMapiNode +168 kB (+43 %) +35,267

Objects: All objects
MName Instance Count Size @
char[] +15,808 (+46 %) +2,789 kB
java.lang.String +6,984 (+27 %) +167 kB
Jjava.util. HashMapSMod e i, (+43 %) +168 kB
com.sun.org.apachexer Create Allocation Call Tree Comparison 5 %) +132 kB
java.lang.Object(] Create Allocation Hot Spot Cemparison +209 kB
javalang.StringBuilder +42,360 bytes
javalang.String[] = Show Source F4 +150 kB
com.sun.org.apachexen i gpo. Bytecode +41,760 bytes
int[] +524 kB
com.sun.org.apachexen Sort Classes » +25,920 bytes
bytel] 2 Find Ctrl+F +2. 716 kB
com.sun.org.apachexen +23,760 bytes
short]] +* Export View Ctrl+R +42,960 bytes
java.util. HashMap +38,256 bytes
java.util. HashMapSMNode View Settings Ctrl+T +88,360 bytes
COM.5UN.0ra.apach eX erces INTErMaN Ut AVILS... I 05U 1+ 112 7l +30.240 bvtes
Total from 313 rows: +72,286 (+48 %) +8,242 kB
v @

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot comparisons
are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can calculate
another tree that shows the differences between the selected snapshots. In contrast to the

regular call tree views, the inline bar diagram now displays the change, either in red for increases
or in green for decreases.

136

Call tree comparison

Thread selection: @8 Allthreads
Thread status: == Runnable
Aggregation: Methods

Difference calculation: Total call times

+6,994 mes (+32 %) £0 inv. java.util.concurrent. ThreadP oolExecutor§Worker.run
() — 5 403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerlmpl.getExchangeRate
0— +5,403 ms (+32 %) +69 inv. com.gjt.demo.server.handlers.WsHandlerlmpl.lockupExchangeRate
0 5,402 ms (+32 %) +69 inv. com.ejt.mock.MockHelper.runnable
D 197 ps (+24 %) +69 inv. java.util. Random.nextint
@™ 11,355 ms (+38 %) +18 inv, RMI: 192.168.218.1
Gl 11,352 ms (+38 %) +18inv. com.ejt.dema.server handlers.RmiHandlerlmpl.remoteOperation
G50 +1,352 ms (+38 %) +18 inv. com.ejt.demo.server.handlers.RmiHandlerlmpl.performWork
O' +927 ms (+44 %) +18 inv. com.gjt.mock.MeckHelper.runnable
b9 310 ms (+26 %) <18 inv. com.gjt.demo.server.handlers.RmiHandlerlmpl.makeWebServiceCalls
@D1+310 ms (+26 %) +17 inw. com.gjt.demo.server.handlers.HandlerHelper.makeWebServiceCall
B 1 +310 ms (+40 %) +51 inv. com.gjt.demo.server.handlers.WsHandler.getEx changeRate [com.sun.proxy.5Pn
m +24 ps (+0 %) +17 inv. java.lang.ThreadLocal get
D +40 ps (+21 %) +18 inv. java.utilRandom.nextint
@A@ +113 ms (+37 %) +19 inv, com.gjt.dema.server. handlers.RmiHandlerimpl.executeldbcStatements
0 +111 ms (+38 %) +19 inv. java.sql.Statement.executeQuery

> @

Depending on the task at hand, it may make it easier for you if you only see call stacks that are
present in both snapshot files and that have changed from one snapshot file to the other. You
can change this behavior in the view settings dialog.

T Call Tree Comparison View Settings X

Time Scale

) Automatic 0 Mixed units 5 ms us

MNode Description

Show percentage bar 0
Always show fully qualified names)
Always show signature (7]
Shorten packages (7]
Time Differences (7]

© Sort by values
Sort by percentages

Show zero difference values)

Only show call stacks that appear in both snapshots|

For the CPU and probe call tree comparisons it may be interesting to compare the average times
instead of the total times. This is an option on the "View parameters" step of the wizard.

137

T CPU Comparisen Wizard - Call tree comparison X

1. Choose comparison type Select view paramaeters
2. Select snapshots
3, Thread selection Please specify the following parameters that are necessary in order to calculate

4. View parameters the snapshot comparison:

Thread status: B Runnable v

Aggregation level: (@ Methods v

Difference calculation: | () Total call times

Average call times

4 Back MNext p Finish Cancel

Telemetry comparisons

For telemetry comparisons you can compare more than two snapshots at the same time. If you
don't select any snapshots in the snapshot selector, the wizard will assume that you want to
compare all of them. Telemetry comparisons do not have a time axis, but show the numbered
selected snapshots as an ordinal x-axis instead. The tool tips contain the full name of the snapshot.

4 § =2 e = t T O

Memory CPU Telemetry Probe St=rt View

c = [« = Center BPOrt Cttings Help
Available Snapshats Z= |2 Memory comparison
serverljps Value type: Current value (when snapshot was saved)
2019-03-22 11:11:54 Memery type: Heap
server2.jps & 5 2 3
2019-03-22 11:11:54
server3.jps TOMB o
2019-03-22 11:11:54]
60 ME N
50 MB E \
40 ME E \
30 MB f \
20 MB f
10 ME E
. Used size /@ /@ 53
= | %K B comparison 1 Mk Comparison 2 | B Comparisen 3

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard gives
you the option to use the value when the snapshot was saved, calculate the maximum value or
find the value at a selected bookmark.

138

I VM Telemetry Comparison Wizard - Memory comparison

1. Choose comparison type Choose the comparison type
2. Select snapshots
3. Memory type One value is extracted from each snapshot for the comparison graph. Please

4. Comparison type select what kind of value should be compared:

5.C d t
aMmpared measurements ﬂ Current value (when snapshot was saved)

Maximum value
Value at bookmark
[Choose one]

Only bookmark names that exist in all snapshots are shown.

4 Back MNext p Finish Cancel

139

IDE Integrations

When you profile your application, the methods and classes that come up in JProfiler's views
often lead to questions that can only be answered by looking their source code. While JProfiler
provides a built-in source code viewer for that purpose, it has limited functionality. Also, when
a problem is found, the next move is usually to edit the offending code. Ideally, there should be
a direct path from the profiling views in JProfiler to the IDE, so you can inspect and improve code
without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for Intelli) IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The plugin installation for Intelli IDEA is
performed with the plugin management in the IDE, for other IDEs the plugin is installed directly
be JProfiler. The installer also offers this action to make it easy to update the IDE plugin along
with the JProfiler installation. The integration wizard connects the plugin with the current
installation directory of JProfiler. In the IDE plugin settings, you can change the used version of
JProfiler at any time. The protocol between the plugin and the JProfiler GUI is backwards
compatible and can work with older versions of JProfiler as well.

@ General Settings X
Ul Session Defaults Snapshots IDE Integrations Updates External Programs

IDE Integration

To integrate JProfiler with an IDE, choose the target IDE and click on "Integrate” below.

Intelli) IDEA v

Integrate O

The Intelli) IDEA integration can also be installed from the plugin manager. In that case, the plugin
will ask you for the location of the JProfiler executable when you profile for the first time.

On different platforms, the JProfiler executable is located in different directories. On Windows,
it's bin\j profiler.exe, on Linux or Unix bi n/j profil er and on macOS there is a special
helper shell script Cont ent s/ Resour ces/ app/ bi n/ macos/j profiler.sh in the JProfiler
application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu contains a
Show Source action.

140

. Telernetries Aggregation level: | @) Classes -

Mame Instance Count Size
byte[] I 5,752 (25 %) 3,057 kB
1':'1 Live Memory java.lang.String I :: 122 (15 %) 674 kB

jdk.internal.org.ohi- -t ——m- Co. WL 070 on 365 kB

All Objects javaang.Object]

. Java.lang.StringBu Add Selection To Class Tracker 151 kB
Recorded Objects int[] 10,628 kB

Show Source F4 134 kB

how Selection In Heap Walker 332 kB

Allocation Call Tree JEVE'UtII‘HaShMEpl =

java.lang.Class[] Show Bytecode 97,280 bytes
Allocation Hot Spots Jjava.util.concurren 97,152 bytes
javalang.Class | % | Mark Current Values 368 kB
Class Tracker java.lang.invoke.M Remove Mark 95,600 bytes
Jjava.security. Acce: o 72,720 bytes
b Heap Walker Jjava.lang.ref. Weak Sort Classes » 54,720 bytes
Jjava.awt.geom. Aff . 114 kB
Jjava.lang.invokeM ’D Find Corl=F 72,192 bytes
I CPU Views char(] T Export View CirleR 194 kB
Jjava.lang.Integer 19,504 bytes
— java.awt.Rectangle View Settings Cirl+T 38,464 bytes
Threads com jprofiler.agenuomn w1, o Uiy 96,976 bytes
. PRS- B 4oz oy AR BT b
Total from 1,713 rows: 177,272 (100 %) 19,272 kB

{? Monitors & Locks o5 - o

If the session was not started from the IDE, the built-in source code viewer is shown that utilizes
line number tables in the compiled class files to find methods. A source file can only be found if
its root directory or a containing ZIP file is configured in the application settings

€ Session Settings X
Application Settings Session name: | Animated Bezier Curve Demo Id: 101 @
Session Type
Profiled JVM ‘ Attach to an already running HotSpot/Open)3 JVM and profile it
Code Editor Attach Select from all local JWMs () Attach to remote JVM () Kubemete
Call Tree Recording @ Launch a new JVM and profile it

et Launch type:) Application Web Start

Y Call Tree Filters

Application Settings

| Trigger Settings Java VM: 17 [C:h\Users\ingo'jd dk-17-b135.1] = Configure JREs
Working directory: [startup directary]

; Databases VM options: (7]
Main class or executable JAR: | bezier.BezierAnim

o HTTP, RPC & JEE
Program arguments: block (7]

° JWM & Custom Probes Open browser with URL

. Java File Path

Advanced Settings

&

derno'\bezier\src]

Class path

© Source path @
Library path €

General Settings Copy Settings From “ Cancel

Together with the source code display, a bytecode viewer based on the jclasslib bytecode viewer
' shows the structure of the compiled class file.

M https://github.com/ingokegel/jclasslib

141

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

= Viewer Window bezier.BezierAnim (C\Users\ingo\projects\jprofilerdist\demo\bezier\src)... — [m] *

Show: | @ Bezierhnim -

General Information
Constant Pool
Interfaces

Fields

Minor version:
Major version: 50[1.6]

Constant pool count: 141

Methods Access flags: 0x0021 [public]

Attributes This class: cp_info #23 <bezier/BezierAnim>
Super class: cp_info #£39 <javax/swing/JApplet>
Interfaces count: 0
Fields count: 3
Methods count: &

Attributes count: 2

Source Bytecode

If the session is launched from the IDE, the integrated source code viewer is not used and the
Show Source action defers to the IDE plugin. The IDE integrations support launched profiling
sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running or
debugging it. The JProfiler plugin will then insert the VM parameter for profiling and connect a
JProfiler window to it. JProfiler is running as a separate process and is started by the plugin if
required. Source code navigation requests from JProfiler are sent to the associated project in
the IDE. JProfiler and the IDE plugin cooperate to make window switching seamless without
blinking task bar entries, just as if you were dealing with a single process.

When starting the session, the "Session startup" dialog lets you configure all profiling settings.
The configured profiling settings that are used for a launched session are remembered by JProfiler
on a per-project or on a per-run-configuration basis, depending on the IDE integrations. When
a session is profiled for the first time, the IDE plugin automatically determines a list of profiled
packages based on the topmost classes in the package hierarchy of your source files. At any later
point, you can go to the filter settings step in the session settings dialog and use the reset button
to perform this calculation again.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE with
the File->Open action or by double-clicking on it in the project window. Source code navigation
from JProfiler will then be directed into the current project. Finally, the IDE plugin adds an Attach
to JVM action to the IDE that lets you select a running JVM and get source code navigation into
the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in mind. For
that purpose, the tool bar in the JProfiler window has an Activate IDE button that is shown for
profiling sessions that are opened by an IDE integration. The action is bound to the F11 key, just
like the JProfiler activation action in the IDE, so you can switch back and forth between the IDE
and JProfiler with the same key binding.

e o % - 3 — —
= l I % T N ML 1+ .:H- '
| = i Jl' EF"] P L 3 J
Start Activate Save Session Start Stop Start Add View Add Configure
Run GC Ex| Hel)
Center | IDE |Snapshot Settings Recordings Recordings Tracking | o Bookmark PO cetiings ®P | Telemetry Telemetries
. -
Telemetries
......... REEERE R ER R EERERRRERERERER
10 0:20 0:30 0:4

142

IntelliJ IDEA integration

To profile your application from Intelli] IDEA, choose one of the profiling commands in the Run
menu, the context menu in the editor, or click on the corresponding toolbar button.

W(EMan~) > ¥ zlO @l T B O BY¥ Q

GOLN Tools VC5 Window Help

P Run ‘Main’ Shift+F10
#£ Debug 'Main' Shift+F9
F% Run 'Main' with Coverage

@ Profile 'Main'

P Run.. k Alt+5hift+F10
#¥ Debug... Alt+Shift+F9

Attach to Local Process...
[Edit Configurations...
3 Import Test Results 4

@ Attach to WM

Copy Reference Ctrl+Alt+Shift+C
[l Paste Ctrl+V
Paste from History... Ctrl+Shift+V
Paste Simple Ctrl+Alt+Shift+V
Column Selection Mode Alt+Shift+|nsert
Find Usages Alt+F7
Refactor b
Folding »
Analyze »
Go To »
Generate... Alt+Insert
Recompile 'Main.kt' Ctrl+Shift+F9
’ Run 'bytecode viewer' Ctrl+Shift+F10

#¥ Debug 'bytecode viewer'
¥# Run 'bytecode viewer with Coverage
@ Profile 'bytecode viewer' k
K Select 'bytecode viewer'

I nral Hicknne .

JProfiler can profile most run configuration types from IDEA, including application servers. To
configure further settings, edit the run configuration, choose the Startup/Connection tab, and
select the JProfiler entry. The screen shot below shows the startup settings for a local server
configuration. Depending on the run configuration type, you can adjust JVM options or retrieve
profiling parameters for remote profiling.

143

SENEF‘ DeploymEntl Logsl Code Coverage Startup/Connection

P Run
*C Debug
¥ Coverage

@ IProfiler

Startup script: | C\Users\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat run HE‘ Use default
Shutdown script: | C\Users\ingo\appservers\apache-tomcat-8.0.36\bin\catalina.bat stop HE‘ Use default
Environment Variables
Pass environment variables

Name | Value -
JAVA_OPTS -agentpath: C:\Users\ingo\projects\jprofiler\dist\bin\windows-x6...

Use profiling settings: Project-specific L[] Skip session startup dialog

Debug parameters for profiling agent: | ‘

Server JVM: | cu/Progrem Files/Java/jak1.2.0_101 -]

¥ Rafera laimckhe Brild Acbiests $nnl imnd s

The profiled application is then started just as with the usual "Run" commands. Precise source

code navigation is implemented for Java and Kotlin.

On the JProfiler tab of the IDE settings, you can adjust the used JProfiler executable and whether

you always want to open a new window in JProfiler for new profiling sessions.

Settings x

@) Taols » JProfiler

Appearance & Behavior JProfiler executable: | Ch\Users\ingo\projects\jprofilerdist\bin'jprofiler.exe Hj

Keymap (| Always open new windows in JProfiler
Editor
Plugins
Version Control
Build, Execution, Deployment
Languages & Frameworks
Tools
‘Web Browsers

External Tools

JProfiler

Terminal
Diff & Merge
PsiViewer

B (o) [) [Len]

The JProfiler tool window in IDEA is shown when you profile a run configuration from IDEA, when

you open a JProfiler snapshot or when you attach to a running JVM.

| JProfiler B, bytecode viewer

¢k | [Z] Consale | @ JProfiler
u
5
g u 4] ,‘,ApplyGraph 27 Recordings: m.‘ o,
“leml Mehe] Total Time * I Self Time
¥ st .
E Proceed graph was cal ick on Apply Graph above
g
\E For more options, crezte the graph in JProfiler instead
i,
&

144

The action in the tool bar with the JProfiler icon activates the JProfiler window. On the right side
of the tool bar, several toggle buttons give access to important recording actions in JProfiler. If
a recording is active, the corresponding toggle button is selected.

Of particular relevance is the CPU recording action, because CPU graph data can be shown directly
in the IDE. The only parameter for graph calculation that is offered in the IDE is the thread status.
To configure advanced parameters like thread selection or to use the call tree root, call tree
removal and call tree view filter settings from the call tree view, you can generate the graph in
the JProfiler window, it will then be shown in the IDE as well.

When you calculate a graph, the list of hot spots will be populated and the source code will be
annotated with gutter icons for incoming and outgoing calls. The popup on the gutter icons
shows an inline graph, clicking on a method will navigate to it. The list of hot spots shows you
interesting entry points for analyzing the graph. When double-clicking on a table row, the source
code is shown.

import ...

=Y 2 . - frem1 e o 1.
Choose outgeing calls

60,283 ps (4 inv.) org.gjt.jclasslib.browser.FrameContentsTabbedPaneWrapper.<init>

6,048 p8 (1 inv.) javax.3wing.JPanel.<init>

783 us (1 inw.) org.gjt.jclasslib.browser.FrameContent.split

559 ps (1 inwv.) org.gjt.jclasslib.browser.FrameContent#Position.<clinit>
11 ps (1 inwv.) org.gjt.jclasslib.browser.FrameContent.get

8 us (1 inv.) org.gjt.jclaaslib.browser.FrameContent$Position.values

6 us (4 inv.) java.util.Collection.add

5 ps (1 inv.) Java.util.Arraylist.<init>

4 ps (1 inv.) kotlin.jvm.internal.Intrinsics.checkParameterIsNotNull

4 ps (1 inv.) Java.awt.Borderlayout.<inits>

This method: 68,048 ps total time, 1 invocation € Show in JProfiler

- fun focus{focusedIlabbedPane: BrowserTabbedPane) {
this. focusedTabbedPane = focusedlabbedPane
}

Frm ~lneall1Taha il f

The Show in JProfiler button contains actions that activate the JProfiler window, either the selected
node in the method graph or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls" analysis is offered, for the incoming calls, the
"Backtraces" analysis is shown. All these actions are also available in the context menu of the
hot spot list or as keyboard actions.

145

™98 code Analyze Refector Build Run Tools VCS Window Help

Class... Crle N 5yser) ¢ FrameContent.kt ¥ | K bytecode viewer ~ | P @ K

@z S X | 6 FrameContent.kt x | '€y JFramejava X | 6 BrowserFramekt x
Symbol... Ctrl+ Alt+Shift+ N
Custom Folding... Cirl+ Alt+Period
= Ctrl+G / This library is free software: you can redistribute

< Back Ctrl+Alt+Left package org.git.jclasslib.browser

Ctrl+Shift+Backspace import ...

class FrameContent (val frame: BrowserFrame) : JPanel()
Bookmarks]
Select In... Alt+F1 val wrappers = Position.values().map { TabbedPaneR
Jump to Navigation Bar Alt+Home
) private var splitMode: SplitMode = SplitMode.NONE
Declaration Ctrl+B
Implementation(s) Ctrl+Alt+B var focusedTabbedPane: BrowserIabbedPane = wrapper
Type Declaration Ctrl+Shift+B
Super Method Ctrl+U val selectedTab: BrowserTab?
: get() = focusedTabbedPane.selectedTab
Test Ctrl+Shift+T -
Related Symbel... Ctrl+Alt+Home init {
Incoming Profiled Calls Ctrl+ Alt+Shift+8
E= SrEnme Ctrl+F12 Outgoing Profiled Calls Ctrl+ Alt+Shift+9
Ctrl+Alt+Shift+0, M

File Path Ctrl+Alt+F12 Show This Method In IProfiler
Ctrl+H Show Backtraces In JProfiler

fr+H Show Cumulated Outgoing Calls In JProfiler

Ale+H Show In Hot Spots

Next Highlighted Error F2 fun closeRllTabs() {

Ctrl+ Alt+Shift+0, B
Ctrl+Alt+Shift+0, O
Ctrl+Alt+Shift+0, H

Previnne Hinhlinhted Frear Shift+F2 wrappers.forEach { it.tabbedPane.removeRll() }

eclipse integration

The eclipse plugin can profile most common launch configuration types including test run
configurations and WTP run configurations. The eclipse plugin only works with the full eclipse

SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Run menu
or click on the corresponding toolbar button. The profile commands are equivalent to the debug
and run commands in eclipse and are part of eclipse's infrastructure, except for the Run->Attach

JProfiler to JVM menu item which is added by the JProfiler plugin.

S eclipse-workspace - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

N-ofe]e-ivis-o-Rle-a-iwe-ime 9-is

h Project Run Window Help

Qv @ @ Run Ctrl+F11
4&, Debug F11
gg Profile
=, Coverage Last Launched Ctrl+5Shift+F11

Profile History >
Profile As >

Profile Configurations..,

Run History >
Run As >

Run Configurations...

Debug History >
Debug As >

Debug Cenfigurations...

Coverage History >
Coverage As >
Coverage...

Toggle Breakpoint Ctrl+Shift+B

@ Toggle Tracepoint

Tnnnle | ine Rreaknnint

146

If the menu item Run->Profile ... does not exist in the Java perspective, enable the "Profile" actions
for this perspective under Window->Perspective->Customize Perspective by bringing the Action Set
Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be adjusted
in eclipse under Window->Preferences->/Profiler.

NetBeans integration

In NetBeans, you can profile standard, free form and Maven projects that use the exec Maven
plugin. To profile your application from NetBeans, choose one of the profiling commands in the
Run menu or click on the corresponding toolbar button. For Maven projects that start an
application in another way and for Gradle projects, start the project normally and use the
Profile->Attach JProfiler To A Running JVM action in the menu.

For free form projects, you have to debug your application once before trying to profile it, because
the required filenbpr oj ect /i de-t argets. xm is set up by the debug action. JProfiler will add
a target named "profile-jprofiler" to it with the same contents as the debug target and will try to
modify the VM parameters as needed. If you have problems profiling a free form project, check
the implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat server
configured in NetBeans. When your main project is a web project, selecting Profile main project
with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to use a
GlassFish Server, selecting Profile main project with JProfiler starts the application server with
profiling enabled.

The location of the JProfiler executable and the policy for opening new JProfiler windows can be
adjusted under Miscellaneous->/Profiler in the options dialog.

() NetBeans IDE

File Edit View MNavigate Source Refacter Run Debug Profile Team Tools Window Help

7 i % ko @ T B DB G-
bug Profile Team Tools Window Help Q
> | @ Profile Main Project With JProfiler Ctrl+Shift+F3

Profile File With JProfiler

CD Profile Project (C:\Users\ingo\Documents\NetBeansProjects\maven) Ctrl+F2
Profile File
Profile Test File
Attach to Project
& Attach to External Process
Finish Profiler Session Shift+F2

Take Thread Dump
Take Heap Dump...

Run GC

Take Snapshot of Collected Results Alt+F2
Reset Collected Results Alt+Shift+F2

El; Insert Profiling Point...

147

A Custom Probes

A.1 Probe Concepts

To develop a custom probe for JProfiler, you should be aware of some basic concepts and
terminology. The common basis of all of JProfiler's probes is that they intercept specific methods
and use the intercepted method parameters and other data sources to build a string with
interesting information that you would want to see in the JProfiler Ul.

The initial problem when defining a probe is how to specify the intercepted methods and get an
environment where you can use the method parameters and other relevant objects for building
the string. In JProfiler, there are three different ways to do that:

+ Ascript probe [p. 155] is completely defined in the JProfiler Ul. You can right-click a method
in the call tree, choose the script probe action and enter an expression for the string in a
built-in code editor. This is great for experimenting with probes, but only exposes a very limited
segment of the capabilities of custom probes.

+ The embedded probe [p. 164] API can be called from your own code. If you write a library, a
database driver or a server, you can ship probes with your product. Anybody who profiles
your product with JProfiler, will get your probes added automatically to the JProfiler Ul.

+ With the injected probe [p. 159] API, you can write probes for 3rd party software in your IDE
using the full capability of JProfiler's probe system. The APl makes use of annotations to define
the interceptions and to inject method parameters and other useful objects.

Profiled JVM

s N

Profiled application

Embedded (0)
probe @
Injected
probe

JProfiler Ul N

Script .
probe

Profiling
agent

The next question is: what should JProfiler do with the string that you have created? There are
two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create a probe event. The event has a description
that is set to that string, a duration that is equal to the invocation time of the intercepted method,
as well as an associated call stack. At their corresponding call stacks, probe descriptions and

148

timings are cumulated and saved as payloads into the call tree. While events are consolidated
after a certain maximum number, the cumulated payloads in the call tree show the total numbers
for the entire recording period. If both CPU data and your probe are being recorded, the probe
call tree view will show the merged call stacks with the payload strings as leaf nodes and the
CPU call tree view will contain annotated links into the probe call tree view.

Probe Events Call tree with annotated payloads
Payload A, time 200 ms .. Method 1
Payload A, time 100 ms Payloads
Payload A, time 300 ms ': Payload A, count 3, time 600 ms
Payload B, time 100 ms Payload B, count 2, time 300 ms
Payload B, time 200 ms Method 2
: Method 3
chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot spots
show which payloads are responsible for most of the expended time, and the back traces show
you which parts of your code are responsible for creating these payloads. In order to get a good
list of hot spots, the payload strings should not contain any unique IDs or timestamps, because
if every payload string is different, there will be no cumulation and no clear distribution of hot
spots. For example, in the case of a prepared JDBC statement, the parameters should not be
included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception handler
method annotated with Payl oadl nt er cept i on either as a string or as a Payl oad object for
advanced functionality. Embedded probes, on the other hand, create payloads by calling Payl oad.
exi t with the payload description as an argument, where the time between Payl oad. ent er
and Payl oad. exi t is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different call
sites. A typical example is a database driver where the payload string is some form of query
string or command. The probe takes the perspective of the call site, where the work that is
measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the intercepted method is called, but rather what method calls are executed after it. A typical
example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each distinct
string that is built by the probe. For each such string, a splitting node will be inserted into the
call tree that contains the cumulated call tree of all corresponding invocations. Where otherwise
there would be just one cumulated call tree, now there is a set of splitting nodes segmenting the
call tree into different parts that can be analyzed separately.

149

Call tree without splits Call tree with splits

Method 1, 1 inv., 1400 ms Method 1, 1 inv., 1400 ms
|: Method 2, 4 inv., 900 ms
Method 3, 3 inv., 500 ms

Split string A |

— Method 2, 3 inv., 200 ms
— Method 3, 1inv., 400 ms

Split string B |

— Method 2, 1inv., 700 ms
— Method 3, 2 inv., 100 ms

Multiple probes can produce nested splits. A single probe by default produces only one split
level, unless it has been configured as reentrant which is not supported for script probes.

In the JProfiler UI, call tree splitting is not bundled with the script probe feature, but is a separate
feature [p. 182]called "Split methods". They just split the call tree without creating payloads, so
no probe view with name and description is required. Injected probes return the split string from
an interception handler method annotated with Spl i t | nt er cept i on, while embedded probes
call Spli t. ent er with the split string.

@) Session Settings X
9

'<: This list contains methods that should be split into multiple branches in the call tree, similarly
to request splitting of the "HTTP server” probe. A configurable script returns a string that is
displayed above the actual method node. For example, you can split the call tree for different
argument values

Application Settings

E‘ Call Tree Recording
- If this feature is abused, the call tree can become very large, adding significant overhead.

Methed Call R d
oc i-all Recording (@ bezier.BezierAnim3Demo.createGraphics2D(int, int)

o
Exceptional Methads Split by return value of script: | "Pixels: " + (i1 *i2) x

Split Methods

T Call Tree Filters
Trigger Settings

; Databases

0 HTTP, RPC & JEE

o VM & Custom Probes

@ Advanced Settings

General Settings Copy Settings From “ Cancel

Telemetries

Custom probes have two default telemetries: The event frequency and the average event duration.
Injected and embedded probes support additional telemetries that are created with annotated
methods in the probe configuration classes. In the JProfiler Ul, script telemetries are independent

150

from the script probe feature and are found in the "Telemetries" section, under the Configure
Telemetries button in the tool bar.

@ Configure Telemetries X
Three types of telemetries are shown in the Telemetries section:

» The set of standard JVM telemetries that is always shown

+ Probes telemetries that are only shown in the probe views by default, but can be added here as well

» Custom telemetries from MBeans or scripts
Probe telemetries and custom telemetries can be added below.

DataBus connections [plain] :#

DataBi cti Script line "' DataBus.getinst. .getActiveC cti
ataBus connections [Script line ""DataBus.getinstance().g iveConnecti Add Probe Telemetry

Add MBean Telemetry Line
Add Script Telemetry Line

Add Empty Custom Telemetry View

@ Hel Cancel
P

Telemetry methods are polled once per second. In the Tel enmet r y annotation, you can configure
the unit and a scale factor. With the | i ne attribute, multiple telemetries can be combined into
a single telemetry view. With the st acked attribute of the Tel enet r yFor mat you can make the
lines additive and show them as a stacked line graph. The telemetry-related APIs in the embedded
and injected probes are equivalent but only applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are called
"control objects" in JProfiler. For example, in a database probe, that role is taken by the physical
connection that executes a query. Such control objects can be opened and closed with the
embedded APl and the injected probe APl which generate corresponding events in the probe
events view. When a probe event is created, the control object can be specified, so that the probe
event contributes to the statistics that is shown in the "Control objects" view of the probe.

151

@ Session View Profiing Window Help factorial jps - JProfiler - a X
> # t o
Stat Szve Session Start Stop Start R Add View
@ Y Eorrrn: Stmm | femrooan Dommitan Tmrrs UNEC ke | PO cings Help
G . Factorial cache
; Databases f Time Line @ control EEEE k Call Tree » Records request to the Factorial cache o
Both open and closed ~ Filter in all text columns + v
@ HTTP, RPC & JEE
D MName Start Time End Time Event Count Event Duration
5 Factorial cache ... :00.708 [Jul 25, .. 812 10,174 ms
o JVM & Custom Probes 4 Factorial cache c... 0:00.708 [Jul 25 722 9,257 ms.
2 Factorial cache c... 0:00.708 850 10,341 ms
Class Loaders 1 Factorial cache c... 0:00.708 . 810 9920 ms
3 Factorial cache c... 0:00.708 [Jul 25, ... 806 9,638 ms.
Exceptions
Sockets
Files
Processes
Garbage Collector
Factorial server
Factorial cache
Fr
MB
Wy vhens Total from 5 rows: 4,000 43331 ms
@ 3recordings Aug 25, 2023, 10:57:42 AM VM #1 00:17 I Snapshot

Control objects have display names that have to be specified when they are opened. If a new
control object is used when creating a probe event, the probe has to provide a name resolver
in its configuration.

In addition, probes can define custom event types via an enum class. When the probe event is
created, one of those types can be specified and shows up in the events view where you can
filter for single event types. More importantly, the timeline view of the probe that shows control
objects as lines on a time axis is colored according to the event type. For a probe without custom
event types, the coloring shows the idle state where no events are recorded and the default
event state for the duration of probe events. With custom types, you can differentiate states, for
example, "read" and "write".

152

@ Session View Profiing Window Help factorial jps - JProfiler - a X
B (% 1 o
Start Session View
T ot Setiings B BOPOT ¢ ttings Help
G . Factorial cache
; Databases o ol © control Objects k Call Tree » Records request to the Factorial cache o
Both open and closed Sort by start time = L hd
@ rrwca eSS ERSREEE S o o SR
Control Objects 0:10 0:20 0:30
° JVM & Custom Probes Factorial cache connection #1 [ID 5] ur onm —
Factorial cache connection #4 [I0 1] I nm
Class Loaders Factorial cache connection #3 [ID 2] I ImEm _—
Factorial cache connection 22 [1D 4] I ne I
Exceptions Factorial cache connection #5 1D 3] | /71717 1° 1 I s
Sockets
Files
Processes
Garbage Collector
Factorial server
Factorial cache
i
{l.‘ MBeans = |dle ™= Read = \\rite /@ [
@ 3recordings Aug 25, 2023, 10:57:42 AM VM #1 00:17 I Snapshot

Recording
Like for all probes, custom probes do not record data by default,

but you have to enable and

disable recording as necessary. While you can use the manual start/stop action in the probe

view, it is often necessary to switch on probe recording at the begi

nning. Because JProfiler does

not know about custom probes in advance, the recording profiles have a Custom probes check

box that applies to all custom probes.

€ Configure Recording Profiles

Configured recording profiles:

L@ CPU enly

r}@ CPU and Allocation Recording

%
L& My recording profile

CPU data
Allocation call stacks

Call tracer

Complexity data
Custom probes

Menitor recerding

Record database probes: [none] -
Record HTTP, RPC & JEE probes: [none] -
-

Record VM & custom probes: [none]

Recording overhead: s

@ Help o |

Cancel

Similarly, you can choose All custom probes for the trigger actions that start and stop probe

recording.

153

@ Trigger Wizard - CPU load threshold X

1. Trigger type Configure actions for this trigger
2. Threshold

3. Actions Configured actions:

4, Descript]
s, G:Z:F:[;m e‘ Start probe recording '+

6. Finished Probe: | All custom probes x

Rec HBase
HTTR Server
HTTP Client
Web Services
JNDI
IMS
RMI
gRPC
Class Loaders
Exceptions
Sockets
Files
Processes
Garbage Collector

All custom probes

4 Back Next P Finish Cancel

For programmatic recording, you cancallCont rol | er. st art ProbeRecor di ng(Control | er.
PROBE_NAME_ALL_CUSTOM ProbeRecor di ngOpt i ons. EVENTS) to record all custom probes,
or pass the class name of the probe in order to be more specific.

154

A.2 Script Probes

Developing a custom probe in your IDE requires a clear understanding of the interception point
and the benefits that the probe will provide. With script probes, on the other hand, you can
quickly define simple probes directly in the JProfiler GUI and experiment without having to learn
any API. Unlike embedded or injected custom probes, script probes can be redefined during a
running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that returns
the payload string for the probe. Multiple such method-script pairs can be bundled in a single
probe.

The script probe configuration is accessed in the session settings. This is the place to create and
delete script probes as well as for saving your script probes to a set that can be imported by
other profiling sessions.

€ Session Settings X

Script probes defined for the current session:

Application Settings
o Image buffers E

E: Call Tree Recording Measures the areas of image buffe,s ™

' Call Tree Filters

Trigger Settings

; Databases
G HTTP, RPC & JEE
o JVM & Custom Probes

Built-In Probes

Script Probes

Custom Probes

1:;5} Advanced Settings
General Settings Copy Settings From “ Cancel

Each script probe needs a name and optionally a description. The name is used to add a probe
view to JProfiler's view selector in the "JEE & Probes" section. The description is shown in the
header of the probe view and should be a short explanation of its purpose.

For selecting a method you have multiple options, including selecting a class from the configured
classpath or selecting a class from the profiled classes if the profiling session is already running.
In the second step, you can then select a method from the selected class.

155

@ Create Script Probe X

1. Name and description Specify the payload interceptions
2. Payload interceptions
Intercepted methods:

- Call tree annotations

@ bezier.BezierAnimSDemo.createGraphics2Diint, int) l+
3. Finished

Payload creation script: | "Pixels: " + Search in Configured Class Path

Search in Other JAR or Class Files
Search in Profiled Classes

Enter Manually (Advanced)

CQuick Help

Use the current object (null for static methods) as well as the methed parameters to
construct and return a payload string.

Probe events, probe call tree and probe hot spots will be shown for these payloads.

w Advanced Options

4 Back Next P Finish Cancel

A much easier way to select the intercepted method is from the call tree view. In the context
menu, the Intercept Method With Script Probe action will ask you if you want to create a new probe
or add an interception to an existing probe.

' Thread status: 0 Thread selection: Aggregation level:
Telemetries B Runnable - 88 Al thread groups A @ Methods ~
) e 7.0% - 1,524 ms - Tinv. java.awt.EventDispatchThread.run

":" Live Memary ®_ 62.1% - 976 ms - 730 inv. bezier.BezierAnimSDemao.paint
@- 39.4% - 61% ms - 730 inv. bezier.BezierAnim$Demao.drawDemo

] ™ 18.2% - 286 ms - 750 inv, java.awt.Graphics.drawlmage
Wi oo e — e

=G Show Call Graph earRect
T Show Threads limage.createGraphics
I CPU Views - RenderingHint
Add Method Trigger ﬂakge-get\‘;\fidth
. ackgroun
Call Tree (@) Add As Exceptional Method nage.getHeight
Het Spots @ =< split Method with a Script ‘Ep
| @ Intercept Method With Script Probe
Call Graph Q@ o PR — et |
@ 3.0% vlerge splitting leve Crl+Alt+ Iy

Outlier Detecti
Bli=rbi=aie) 3= Remove Selected Sub-Tree Delete

Complexity Analysis Restore Removed Sub-Ti

Call Tracer W Add Filter From Selection 4

JavaScript XHR @ Show Tree Legend
 Show Node Details Ctrl+Alt+|
Threads = Show Source F4 > @

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well as the
object on which the method was called. If you need access to the return value of the intercepted
method or any thrown exceptions, you have to write an embedded or injected probe.

In this environment, your script can construct the payload string, either as an expression or as
a sequence of statements with a return statement. The simplest version of such a script simply
returns par anet er.toStri ng() for one parameter or Stri ng. val uet (par anet er) for a
parameter with a primitive type. If it returns nul | , no payload will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section will
show links into the probe view at the appropriate call stacks. Alternatively, you can select to show
the payload strings inline in the CPU call tree view. The "Payload interceptions->Call tree
annotations" step of the probe wizard contains this option.

156

@ Settings Edit Search Code Help Edit

¥R E PR 2 % O
Show Meodify Test

Copy Cut Pazte Find Replace
Py History P Classpath Compile

Help
==' Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists
?'m of regular Java code. The following parameters are available:

J

- com.jprofiler.api.agent.ScriptContext scriptContesxt

- javalang.Class<?> ¢

- bezier.BezierAnim.Demo currentObject

-int i1
-int i2

The expected return type is java.lang.String

Script:

1"Pixels: " + (il * i2)

One more parameter that is available to the script is the script context, an object of type com

jprofiler.api.agent. ScriptContext thatallows you to store data between invocations of
any script that is defined for the current probe. For example, let's suppose that the intercepted
method A only sees objects that have no good text representation, but the association between
object and display name could be obtained by intercepting method B. Then you could intercept
method B in the same probe and save the object-to-text association directly to the script context.
In method A you would then get that display text from the script context and use it to build the

payload string.

Method A, intercepts: ‘

- object c

@ M [

scriptContext.putObject(c,n);
return null;

|\

-

Timed method B, intercepts:

@ - object c

return|scriptContext.getObject(c); [« E

157

If these kinds of concerns get too complex, you should consider switching to the embedded or
injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but they
are missing a couple of capabilities from the full probe system that you should be aware of:

+ Script probes cannot do call tree splitting. In the JProfiler Ul this is a separate feature as
explained in the custom probes concepts [p. 148]. Embedded and injected probes offer call
tree splitting functionality directly.

+ Script probes cannot create control objects or create custom probe event types. This is only
possible with embedded or injected probes.

+ Script probes cannot access return values or thrown exceptions, unlike embedded and injected
probes.

+ Script probes cannot handle reentrant interceptions. If a method is called recursively, only
the first call into it is intercepted. Embedded and injected probes offer you fine-grained control
over reentrant behavior.

*+ Itis not possible to bundle telemetries other than default telemetries into the probe view.
Instead, you can use the script telemetry feature as shown in the custom probes
concepts. [p. 148]

158

A.3 Injected Probes

Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside the JProfiler GUI in your IDE and rely on the
injected probe API that is provided by JProfiler. The APl is licensed under the permissive Apache
License, version 2.0, making it easy to distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api / sanpl es/
si npl e-i nj ect ed- pr obe directory of your JProfiler installation. Execute . . / gr adl ewin that
directory to compile and runiit. The gradle build file bui | d. gr adl e contains further information
about the sample. The example in api / sanpl es/ advanced- i nj ect ed- pr obe shows more
features of the probe system, including control objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single artifact
with maven coordinates

group: com jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 14.0.3.

Jar, source and javadoc artifacts are published to the repository at

https:// maven. ej -t echnol ogi es. coni repository

You can either add the probe API to your development class path with a build tool like Gradle
or Maven, or use the JAR file

api /jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api / j avadoc/ i ndex. ht m

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview for
thecom jprofiler.api.probe.injectedpackageis agood starting point for exploring the
API.

Probe structure

An injected probe is a class annotated with com j profil er. api . probe. i nj ect ed. Probe.
The attributes of that annotation expose configuration options for the entire probe. For example,
if you create a lot of probe events that are not interesting for individual inspection, the event s
attribute allows you to disable the probe events view and reduce overhead.

@r obe(nanme = "Foo", description = "Shows foo server requests", events = "fal se")
public class FooProbe {

}

159

To the probe class, you add specially annotated static methods in order to define interception
handlers. The Payl oadl nterception annotation creates payloads while the
Splitlnterception annotation splits the call tree. The return value of the handler is used as
the payload or the split string, depending on the annotation. Like for script probes, if you return
nul I, the interception has no effect. Timing information is automatically calculated for the
intercepted method.

@°r obe(nane = "FooBar")
public cl ass FooProbe {
@rayl oadl nt er cepti on(
i nvokeOn = | nvocationType. ENTER,
met hod = @t hodSpec(cl assNane = "com bar. Dat abase",
met hodName = "processQuery",
par anet er Types = {"com bar. Query"},
returnType = "void"))
public static String fooRequest (@Paraneter(0) Query query) {
return query. get Verbose();
}

@plitlnterception(
met hod = @t hodSpec(cl assNane = "com f 0oo. Server",
net hodNane = "handl eRequest ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static String barQuery(@araneter(0) Request request) ({
return request.getPath();
}

As you can see in the above example, both annotations have a net hod attribute for defining the
intercepted methods with a Met hodSpec. In contrast to script probes, the Met hodSpec can have
an empty class name, so all methods with a particular signature are intercepted, regardless of
the class name. Alternatively, you can use the subt ypes attribute of the Met hodSpec to intercept
entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler methods
declare parameters to request values of interest. Each parameter is annotated with an annotation
fromthecom jprofiler.api.probe.injected. paraneter package, so the profiling agent
knows which object or primitive value has to be passed to the method. For example, annotating
a parameter of the handler method with @Par anet er (0) injects the first parameter of the
intercepted method.

Method parameters of the intercepted method are available for all interception types. Payload
interceptions can access the return value with @Ret ur nVal ue or a thrown exception with
@xcepti onVal ue if you tell the profiling agent to intercept the exit rather than the entry of
the method. This is done with the i nvokeOn attribute of the Payl oadl nt er cept i on annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations of
the intercepted method if you set the r eent r ant attribute of the interception annotation to
t rue. With a parameter of type Pr obeCont ext in your handler method, you can control the
probe's behavior for nested invocations by calling Pr obeCont ext . get Qut er Payl oad() or
ProbeCont ext.restartTi m ng().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for building
the probe string. For that purpose, your probe can contain an arbitrary number of interception
handlers annotated with | nt er cept i on that do not create payloads or splits. Information can
be stored in static fields of your probe class. For thread safety in a multi-threaded environment,

160

you should use ThreadLocal instances for storing reference types and the atomic numeric
types from the j ava. uti |l . concurrent. at om c package for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method exit. A
common case is if you maintain state variables like i nMet hodCal | that modify the behavior of
another interception. You can seti nMet hodCal | totrue in the entry interception, which is the
default interception type. Now you define another static method directly below that interception
and annotate it with @\ddi ti onal I nterception(i nvokeOn = | nvocationType. EXIT).
The intercepted method is taken from the interception handler above, so you do not have to
specify it again. In the method body, you can set your i nMet hodCal | variable to f al se.

private static final ThreadLocal <Bool ean> i nMet hodCal |l =
ThreadLocal .withlnitial (() -> Bool ean. FALSE) ;

@ nterception(
i nvokeOn = | nvocati onType. ENTER,
met hod = @kt hodSpec(cl assNane = "com f oo. Server",
nmet hodNane = "internal Cal | ",
par anet er Types = {"com f 0o. Request"},
returnType = "void"))
public static void guardEnter() {
i nMet hodCal | . set (Bool ean. TRUE) ;
}

@\ddi tional I nterception(lnvocationType. EXIT)
public static void guardExit() {

i nMet hodCal | . set (Bool ean. FALSE) ;
}

@plitlnterception(
nmet hod = @kt hodSpec(cl assNane = "com f oo. Server",
met hodNanme = "handl eRequest ",
par anmet er Types = {"com f 00. Request"},
returnType = "void"),
reentrant = true)
public static String splitRequest(@araneter(0) Request request) {
if (linMethodCall.get()) {
return request.getPath();
} else {
return null;
}

You can see a working example of this use case in api / sanpl es/ advanced- i nj ect ed- pr obe/
src/ mai n/ j ava/ AdvancedAw Event Pr obe. j ava.

Control objects

The control objects view is not visible unless the cont rol Cbj ects attribute of the Probe
annotation is set to t r ue. For working with control objects, you have to obtain a Pr obeCont ext
by declaring a parameter of that type in your handler method. The sample code below shows
how to open a control object and associate it with a probe event.

161

@°r obe(nane = "Foo", control Cbjects = true, custoniTypes = M/Event Types. cl ass)
public class FooProbe {
@nterception(
i nvokeOn = | nvocationType. EXI T,
nmet hod = @kt hodSpec(cl assNane = "com f oo. Connect i onPool ",
nmet hodNane = "creat eConnecti on",
par anet er Types = {},
returnType = "com foo. Connection"))
public static void openConnecti on(ProbeContext pc, @ReturnVal ue Connection c) {
pc. openCont rol Obj ect (c, c.getld());

}

@pPay| oadl nt er cepti on(
i nvokeOn = | nvocationType. EXI T,

met hod = @t hodSpec(cl assNanme = "com f oo. Connect i onPool ",
net hodName = "creat eConnecti on",
par anet er Types = {"com foo. Query", "com foo. Connection"},
returnType = "com f 0oo. Connecti on"))

public static Payl oad handl eQuery(
Pr obeCont ext pc, @araneter(0) Query query, @Paranmeter (1) Connection c) {
return pc.createPayl oad(query. get Verbose(), ¢, M/Event Types. QUERY);

Control objects have a defined lifetime, and the probe view records their open and close times
in the timeline and the control objects view. If possible, you should open and close control objects
explicity by calling ProbeContext.openControl Gbject() and ProbeContext.
cl oseCont rol Obj ect (). Otherwise you have to declare a static method annotated with
@ont r ol bj ect Nare that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns instances
of Payl oad instead of St ri ng. The Pr obeCont ext . cr eat ePayl oad() method takes a control
object and a probe event type. The enum with the allowed event types has to be registered with
the cust onilypes attribute of the Pr obe annotation.

Control objects have to be specified at the start of the time measurement which corresponds
to the method entry. In some cases, the name of payload string will only be available at method
exit because it depends on the return value or other interceptions. In that case, you can use
Pr obeCont ext . cr eat ePayl oadW t hDef err edNanme() to create a payload object without a
name. Define an interception handler annotated with @\ddi t i onal | nt er cept i on(i nvokeOn
= I nvocationType. EXI T) right below and return a Stri ng from that method, it will then
automatically be used as the payload string.

Overriding the thread state

When measuring execution times for database drivers or native connectors to external resources,
it sometimes becomes necessary to tell JProfiler to put some methods into a different thread
state. For example, it is useful to have database calls in the "Net I/0" thread state. If the
communication mechanism does not use the standard Java I/0 facilities, but some native
mechanism, this will not automatically be the case.

With a pair of ThreadSt ate. NETI O. enter () and ThreadSt ate. exi t() calls, the profiling
agent adjusts the thread state accordingly.

162

@nterception(invokeOn = | nvocationType. ENTER, nethod = ...)
public static void enterMethod(ProbeContext probeContext, @hisValue JConponent
conmponent) {
Thr eadSt at e. NETI O. enter () ;
}

@\ddi tional I nterception(lnvocationType. EXI T)
public static void exitMthod() {
ThreadState. exit();

}

Deployment

There are two ways to deploy injected probes, depending on whether you want to put them on
the classpath or not. With the VM parameter

-Dj profiler.probed assPat h=. ..

a separate probe class path is set up by the profiling agent. The probe classpath can contain
directories and class files, separated with ;' on Windows and "' on other platforms. The profiling
agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM parameter

-Dj profiler.custonProbes=...

to a comma-separated list of fully qualified class hames. For each of these class names, the
profiling agent will try to load an injected probe.

163

A.4 Embedded Probes

If you control the source code of the software component that is the target of your probe, you
should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects as method parameters for the handler method. With
embedded probes, this is not necessary because you can call the embedded probe API directly
from the monitored methods. Another advantage of embedded probes is that deployment is
automatic. Probes ship together with your software and appear in the JProfiler Ul when the
application is profiled. The only dependency you have to ship is a small JAR file licensed under
the Apache 2.0 License that mainly consists of empty method bodies serving as hooks for the
profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that the
artifact name is j profil er - pr obe- enbedded instead of j profi |l er-probe-i nj ected and
that you ship the JAR file with your application instead of developing the probe in a separate
project. The probe API that you need for adding an embedded probe to your software component
is contained in the single JAR artifact. In the javadoc, start with the package overview for com
jprofiler.api.probe. enbedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api /
sanpl es/ si npl e- enbedded- pr obe, there is an example that gets you started with writing an
embedded probe. Execute . . / gr adl ewin that directory to compile and run it and study the
gradle build file bui | d. gr adl e to understand the execution environment. For more features,
including control objects, go to the example in api / sanpl es/ advanced- enbedded- pr obe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The probe
class mustextendcom j profil er. api . probe. enbedded. Payl oadPr obe orcom j profiler.
api . probe. enbedded. Spl i t Probe, depending on whether your probe collects payloads or
splits the call tree. With the injected probe API, you use different annotations on the handler
methods for payload collection and splitting. The embedded probe API, on the other hand, has
no handler methods and needs to shift this configuration to the probe class itself.

public cl ass FooPayl oadProbe extends Payl oadProbe {

@verride
public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

Whereas injected probes use annotations for configuration, you configure embedded probes
by overriding methods from the base class of the probe. For a payload probe, the only abstract
method is get Nane(), all other methods have a default implementation that you can override
if required. For example, if you want to disable the events view to reduce overhead, you can
override i sEvent s() toreturnfal se.

For collecting payloads and measuring their associated timing you use a pair of Pay| oad. ent er ()
and Payl oad. exi t () calls

164

public void neasuredCall (String query) {
Payl oad. ent er (FooPay| oadPr obe. cl ass) ;

try {
per f or mor k() ;

} finally {
Payl oad. exi t (query);
}

The Payl oad. ent er () call receives the probe class as an argument, so the profiling agent knows
which probe is the target of the call, the Payl oad. exi t () call is automatically associated with
the same probe and receives the payload string as an argument. If you miss an exit call, the call
tree would be broken, so this should always be done in a finally clause of a try block.

If the measured code block does not produce any value, you can call the Payl oad. execut e
method instead which takes the payload string and a Runnabl e. With Java 8+, lambdas or method
references make this method invocation very concise.

public void nmeasuredCal | (String query) {
Payl oad. execut e(FooPayl oadPr obe. cl ass, query, this::performrk);

}

The payload string must be known in advance in that case. There is also a version of execut e
that takes a Cal | abl e.

public QueryResult neasuredCall (String query) throws Exception {
return Payl oad. execut e(Payl oadPr obe. cl ass, query, () -> query.execute());
}

The problem with the signatures that take a Cal | abl e is that Cal | abl e. cal | () throws a
checked Excepti on and so you have to either catch it or declare it on the containing method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods in the
Payl oad class. They are associated with probe events by passing them to a version of the
Payl oad. ent er () or Payl oad. execut e() methods that take a control object and a custom
event type.

public void nmeasuredCal | (String query, Connection connection) {
Payl oad. ent er (FooPayl oadPr obe. cl ass, connection, M/Event Types. QUERY);

try {
per f or mAbr k() ;

} finally {
Payl oad. exi t (query);
}

The control object view must be explicitly enabled in the probe configuration, and custom event
types must be registered in the probe class as well.

165

public class FooPayl oadProbe extends Payl oadProbe {

@verride

public String getNane() {
return "Foo queries";

}

@verride

public String getDescription() {
return "Records foo queries";

}

@verride
publ i c bool ean isControl Gbjects() {
return true;

}

@verride
public C ass<? extends Enune get Custoniypes() {
return Connecti on. cl ass;

}

If you do not explicitly open and close your control objects, the probe class must override
get Cont r ol Obj ect Nane in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split the call
tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
i sReentrant () toreturntrue. Split probes can also create a probe view and publish the split
strings as payloads if you override i sPayl oads() to returntrue in the probe class.

To perform a split, make a pair of callsto Split.enter() andSplit.exit().

public void splitMthod(String paraneter) ({
Split.enter(FooSplitProbe.class, paraneter);

try {
per f or Mor k(par aneter);

} finally {
Split.exit();
}

Contrary to to payload collection, the split string has to be passedtothe Spl i t . ent er () method
together with the probe class. Again, it is important that Spli t. exi t () is called reliably, so it
should bein afinally clause of a try block. Spl i t also offers execut e() methods with Runnabl e
and Cal | abl e arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being in the
same classpath you can directly access all static methods in your application. Just like for injected
probes, annotate static public methods in your probe configuration class with @el enet ry and

166

return a numeric value. See the chapter on probe concepts [p. 148] for more information. The
@el enet ry annotations of the embedded and the injected probe APIs are equivalent, they are
just in different packages.

Another parallel functionality between embedded and injected probe APl is the ability to modify
the thread state with the Thr eadSt at e class. Again, the class is present in both APIs with different
packages.

Deployment

There are no special steps necessary to enable embedded probes when profiling with the JProfiler
Ul. However, the probe will only be registered when the first call into Payl oad or Spl i t is made.
Only at that point will the associated probe view be created in JProfiler. If you prefer the probe
view to be visible from the beginning, as is the case for built-in and injected probes, you can call

Payl oadPr obe. r egi st er (FooPayl oadPr obe. cl ass) ;
for payload probes and
Spl i t Probe. regi ster(FooSplitProbe.cl ass);

for split probes.

You may be considering whether to call the methods of Payl oad and Spl i t conditionally, maybe
controlled by a command line switch in order to minimize overhead. However, this is generally
not necessary because the method bodies are empty. Without the profiling agent attached, no
overhead is incurred apart from the construction of the payload string. Considering that probe
events should not be generated on a microscopic scale, they will be created relatively rarely, so
that building the payload string should be a comparatively insignificant effort.

Another concern for containers may be that you do not want to expose external dependencies
on the class path. A user of your container could also use the embedded probe API which would
lead to a conflict. In that case, you can shade the embedded probe API into your own package.
JProfiler will still recognize the shaded package and instrument the API classes correctly. If
build-time shading is not practical, you can extract the source archive and make the classes part
of your project.

167

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods

If the method call recording type is set to instrumentation, all methods of profiled classes are
instrumented. This creates significant overhead for methods that have very short execution
times. If such methods are called very frequently, the measured time of those methods will be
far too high. Also, due to the instrumentation, the hot spot compiler might be prevented from
optimizing them. In extreme cases, such methods become the dominant hot spots, although
this is not true for an uninstrumented run. An example is the method of an XML parser that
reads the next character. Such a method returns very quickly, but may be invoked millions of
times in a short time span.

This problem is not present when the method call recording type is set to sampling. However,
sampling does not provide invocation counts, only shows longer method calls, and several views
do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called auto-tuning.
From time to time, the profiling agent checks for methods with high instrumentation overhead
and transmits them to the JProfiler GUI. In the status bar, an entry alerting to the presence of
overhead hot spots will be shown.

Complexity Analysis
Call Tracer

JavaScript XHR

Threads

I u 6 overhead hot spots I W @ 1 active recording €3 Auto-update5s VM #1

You can click on that status bar entry to review the detected overhead hot spots and choose to
accept them into the list of ignored methods. These ignored methods will then not be
instrumented. When a session is terminated, the same dialog is shown.

€ Overhead Hot Spots Detected X

Some methods with excessive instrumentation overhead have been detected. They are called very
frequently, their execution times are very short, and the time required for measuring those calls is
disproportional.

Since they distort the overall picture, JProfiler recommends that you add these methods to the list
«of ignored methods.

You can edit the list of ignored methods in the filter settings section of the session settings.
@ Jjava.awt.Graphics2D.clearRect{int, int, int, int)
@ java.awt.EventQueue.invokelater(java.lang.Runnable)
[m] javax.swing.JCompenent._paintimmediately(int, int, int, int)
@ Jjavax.swing.RepaintManager.addDirtyRegionD(java.awt.Container, int, int, int, int)
@ javasecurity.AccessController.getContext()

@ javax.swing.RepaintManagerSPaintManager.paintDoubleBufferedFPScales(javax.swing.JCompe...

Disable auto-tuning

O Help “ Cancel

After you apply the new profiling settings, all ignored methods will be missing in the call tree.
Their execution time will be added to the self-time of the calling method. If later on you find that

168

some ignored

methods are indispensable in the profiling views, you can remove them in the

Ignored Methods tab in the session settings.

@ Session Settings X

X This list contains methods that should be completely ignored by JPrefiler. The main use cases
Application Settings are call site mechanisms of dynamic languages and overhead hot spots that create excessive
overhead for dynamic instrumentation.

E= Call Tree Recording During profiling overhead hot spots are indicated in the status bar and at the end of a session

you are prompted whether to accept them as ignored methods. If you would like to deactivate

Profiling" tab.

this feature, please clear the list, edit the profiling settings and disable auto-tuning on the "CPU
T Call Tree Filters

Define Filters

Ignored methods

@ org.codehaus.groovy.runtime.callsite. CallSite.* o
@ Jjava.awt.Graphics2D. clearRect(int, int, int, int)

@ Jjava.awt.EventQueue.invokelater(java.lang.Runnable) O
Trigger Settings @ javax.swingJComponent,_paintimmediately(int, int, int, int)

(@ javax swing.RepaintManager.addDirtyRegionD(java.awt.Container, int, int, int, int)

; Databases [m] Jjava.security. AccessController.getContext()

@ HTTP, RPC & JEE
° JVM & Custom Probes

@"' Advanced Settings

(@ javax.swing RepaintManager$PaintManager.paintDoubleBufferedFPScales javax.swing.JCo..

General Settings Copy Settings From “ Cancel

The default configuration for ignored methods includes the call site classes for Groovy that are
used for the dynamic method dispatch, but make it difficult to follow the actual call chain.

If you want to manually add ignored methods, you can do so in the session settings, but a much
easier way is to select a method in the call tree and invoke the Ignore Method action from the

context menu.

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~
0— 95.5% - 1,483 ms - 1inv. java.awt.EventDispatchThread.run
3 Show Call Graph me.scheduleRepaint
T Show Threads no.scheduleBlockingActivity
Add Method Trigger block

% Fenand Multinle | evels

(@ Add As Exceptional Method
=< Split Method with a Script
@ Intercept Method With Script Probe

&= Remove Selected Sub-Tree

Restore Removed & (4 Ctrl

Add Filter From Selection 3 Compact bezier.BezierAnim$Demo

—_ C t bezier.
@ Show Tree Legend ompact bezier

| Show MNode Details Ctrl+Alt+|
= Show Source F4

i Show Bytecode

@ Ignore bezier.BezierAnim$Demo
@ Ignore bezier.

ﬂ Ignore method bezier.BezierAnim$Demo.run{)

v @

In the filter settings, you can also ignore entire classes or packages by setting the type of the

filter entry to "l

gnored". The Add Filter From Selection menu contains actions that depend on the

selected node and suggest ignoring the class or packages up to the top-level package. Depending
on whether the selected node is compact-profiled or profiled, you also see actions for changing

the filter to the

opposite type.

169

In case you don't want to see any messages about auto-tuning, you can disable it in the profiling
settings. Also, you can configure the criteria for determining an overhead hot spot. A method is
considered an overhead hot spot if both of the following conditions are met:

« The total time of all its invocations exceeds a threshold in per mille of the entire total time in
the thread

* Its average time is lower than an absolute threshold in microseconds

€ Session Settings X
g

4l Enable CPU profil
Application Settings £ Enable i

Aute-Tuning For Instrumentation

Enable auto-tuning 0

A methed is an overhead hot spot and will be suggested for inclusion into the list of ignored
methods, if both of the following conditions are true:

Call Tree Recording

Call Tree Filters

1. The total time of the method is more than 10 | % permille of the entire total time
2. The average time of the method is less than 100 | %) ps

Trigger Settings

Auto-tuning is only performed if the method call recording type is set to "Instrumentation” on
Databases the method call recording tab.

Call Tree Recording Optiens

HTTP, RPC & JEE CPU times for instrumentation: () Elapsed times) Estimated CPU times)
Instrument native methods 0
VM & Custom Probes Thread resolution for async sampling €

E Exceptional Method Run Recording
Advanced Settings

L0000 MW T 44

Mazximum number of separately recorded methed runs: 5% @

CPU Profil
reniing Time type for determining exceptional method runs: o Al states v

Probes & JEE

Call Tree Splitting
Memary Profiling
Maximum number of splits: 128 |+ 0

T P E

General Settings Copy Settings From “ Cancel

170

B.2 Async And Remote Request Tracking

Asynchronous execution of tasks is a common practice, both in plain Java code and even more
so with reactive frameworks. Code that is adjacent in your source file is now executed on two
or more different threads. For debugging and profiling, these thread changes present two
problems: On the one hand, it is not clear how expensive an invoked operation is. On the other
hand, an expensive operation cannot be traced back to the code that caused its execution.

JProfiler provides different solutions to this problem depending on whether the call stays in the
same JVM or not. If the async execution takes place in the same JVM that invokes it, the "Inline
Async Executions" call tree analysis [p. 186] calculates a single call tree that contains both call
sites as well as execution sites. If a request to a remote JVM is made, the call tree [p. 52] contains
hyperlinks to call sites and execution sites, so you can seamlessly navigate both ways between
different JProfiler top-level windows that show profiling sessions for the involved JVMs.

Enabling Async And Remote Request Tracking

Async mechanisms can be implemented in various ways, and the semantics of starting tasks on
a separate thread or in a different JVM cannot be detected in a generic way. JProfiler explicitly
supports several common asynchronous and remote request technologies. You can enable or
disable them in the request tracking settings. By default, request tracking is not enabled. It is
also possible to configure request tracking in the session startup dialog that is shown directly
before a session is started.

@ Async And Request Tracking Types *

Available tracking types:
Async tracking &)
D Executors O
Kotlin Coroutines @
"Wt @
wT @
Virtual threads @)
Platform threads)
Remote request tracking)
Ml &
aRPC @
Remote EJB @
HTTP requests)

O Help “ Cancel

In JProfiler's main window, the status bar indicates if some async and remote request tracking
types are enabled and gives you a shortcut to the configuration dialog.

n
1

Menitors & Locks

; Databases Async tracking is active for:

* Executors

G HTTP, RPC & JEE - AT

Click to toeggle or press [Ctrl+F8]

-

@ 3 active recordings @5 Auto-update5s VM #1

JProfiler detects if an async request tracking type that is not activated is used in the profiled JVM

and shows you a . notification icon next to the async and remote request tracking icon in the
status bar. By clicking on the notification icon, you can activate the detected tracking types. Async
and remote request tracking can produce substantial overhead and should only be activated if
necessary.

171

4,000
-

Threads
'With request tracking, local async executions can be shown inline.
The following request tracking types have occurred in the profiled JVM:

Menitors & Locks
* Executors

« AWT

B =D

Databases
Click to activate request tracking for the above tracking types.

v V

@ 3 active recordings D Auto-update2 s VM 21

Async Tracking

If at least one async tracking type is activated, the call tree and hot spot views for CPU, allocation
and probe recording show information about all activated tracking types together with a button
that calculates the "Inline Async Executions" call tree analysis. In the result views of that analysis,

the call tree of all async executions is connected with the call sites by way of an I "async
execution" node. By default, the async execution measurements are not added to the ancestor
nodes in the call tree. Because it is sometimes useful to see aggregated values, a checkbox at
the top of the analysis allows you to do that where appropriate.

Thread status: O Thread selection: Aggregation level:
== Runnable - E All thread groups v 0 Metheds =

Asgync tracking: Executors and AWT | Inline Async Executions

() 55,1% - 392 ms - 1 inv. jdbc.dbcDemo.main
0 W 32.3% - 226 ms - 5 inv. java.util.concurrent. ThreadP oolExecutorSWorker.run
0 B 11.3% - 80,697 ps - 1 inv, java.awt.EventDispatchThread.run

The simplest way to offload a task on another thread is to start a new thread. With JProfiler, you
can follow a thread from its creation to the execution site by activating the "Thread start" request
tracking type. However, threads are heavy-weight objects and are usually reused for repeated
invocations, so this request tracking type is more useful for debugging purposes.

The mostimportant and generic way to start tasks on other threads uses executors in the j ava.
util.concurrent package. Executors are also the basis for many higher-level third party
libraries that deal with asynchronous execution. By supporting executors, JProfiler supports a
whole class of libraries that deal with multi-threaded and parallel programming.

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM: AWT
and SWT. Both toolkits are single-threaded, which means that there is one special event dispatch
thread that can manipulate GUI widgets and perform drawing operations. In order not to block
the GUI, long-running tasks have to be performed on background threads. However, background
threads often need to update the GUI to indicate progress or completion. This is done with special
methods that schedule a Runnabl e to be executed on the event dispatch thread.

In GUI programming, you often have to follow multiple thread changes in order to connect cause
and effect: The user initiates an action on the event dispatch thread, which in turn starts a
background operation via an executor. After completion, that executor pushes an operation to
the event dispatch thread. If that last operation creates a performance problem, it's two thread
changes away from the originating event.

172

Finally, JProfiler supports Kotlin coroutines'”, Kotlin's multi-threading solution that is implemented
for all Kotlin backends. The async execution itself is the point where a coroutine is launched. The
dispatching mechanism of Kotlin coroutines is flexible and can actually involve starting on the
current thread, in which case the "async execution" node has an inline part that is then reported
separately in the text of the node.

G) 18 execution sites were were inlined Q x @? Q
Thread status: Thread selection: Aggregation level:
== Runnable 88 All thread groups @ Methods

Add async execution time to tree O

3 Show suspended time (7]
O— 100.0% - 80,303 ps - 1 inv. io.netty.util.concurrent.FastThreadLecalRunnable.run
: 2,088 ms async execution (79,367 us was already inline)

I 06.2% - 2,008 ms suspended time

@G, 1.5%- 30,755 ps - 1 semantic inv. io.ktor.samples.simulateslowserver SimulateSlowServerApplicationKtSmodule$25 1.invokeSusp

1.5% - 30,732 ps - 1inv. io.kterresponseApplicationRespenseFunctionsktrespondTextSdefault

0 0.0% - 4 ps - 1 inv. io.ktor.util. pipeline. PipelineContext.getContext

@G, 0.8% - 16,928 ps - 2 semantic inv. io.ktor.samples.simulateslowserver SimulateSlowServerApplicationKtSmodule$ 1 invokeSuspen
0 0.6% - 12,368 ps - 2 inv. kotlinx.ceroutines.time. TimekKt.delay
0 0.2% - 4,296 ps - 2 inv., java.time.Duration.ofSeconds

v @

Suspending methods can interrupt the execution which is then possibly resumed on different

threads. Methods where suspension was detected have an additional "suspend" icon with a
tooltip that shows the number of actual calls versus the semantic invocations of the method.
Kotlin coroutines can be suspended deliberately, but because they are not bound to threads,
the waiting time will not appear anywhere in the call tree. To see the total time taken until a

coroutine execution is finished, a @ "suspended" time node is added below the "async execution"
node that captures the entire suspension time for the coroutine. Depending on whether you are
interested in the CPU time or in the wall clock time of async executions, you can add or remove
those nodes on the fly with the "Show suspended times" check box at the top of the analysis.

Tracking unprofiled call site

By default, both executor and Kotlin coroutine tracking only track async executions where the
call site is in a profiled class. This is because frameworks and libraries can use these async
mechanisms in a way that is not directly related to the execution of your own code, and the
added call and execution sites would just add overhead and distraction. However, there are use
cases for tracking unprofiled call sites. For example, a framework can start a Kotlin coroutine on
which your own code is then executed.

If such call sites in unprofiled classes are detected, the tracking information in the call tree and
hot spot views shows a corresponding notification message. In live sessions, you can switch on
tracking for unprofiled call sites separately for executor and Kotlin coroutine tracking directly
from those views. These options can be changed at any time on the "CPU profiling" step of the
session settings dialog.

M https://kotlinlang.org/docs/reference/coroutines.html

173

https://kotlinlang.org/docs/reference/coroutines.html

Thread status: O Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

Async tracking: Kotlin Coroutines Inline Async Executions w Track unprofiled calls (7]

0 T"— 100.0% - 80,305 ps - 1 inv. io.netty.util.cony For Kotlin Coroutines le.run - inline async executions
(D) mm 32,3% - 30,755 ps - 1 inv. ioktor.samples.simulatESTowEErTErSITTE SIS TR ApplicationKtSmodule$2S invekeSuspend
(™ 21.1% - 16,928 ps - 4 inv. io.ktor.samples.simulateslowserver. SimulateSlowServerApplicationKtSmoduleS1.invokeSuspend

It is important to understand that Kotlin coroutines can only be tracked when their launch
happened while CPU recording was active. If you start CPU recording later on, the async executions
from Kotlin coroutines cannot be inlined. JProfiler will notify you just like for the detection of call
sites in unprofiled classes. If you need to profile long-lived coroutines that are started at the
beginning of the application, then using the attach mode is not an option. In that case, launch
the JVM with the -agentpath VM parameter [p. 11] and start CPU recording at startup.

Remote Request Tracking

For selected communication protocols, JProfiler is able to insert meta-data and track requests
across JVM boundaries. The supported technologies are:

+ HTTP: HttpURLConnection, java.net.http.HttpClient, Apache Http Client 4.x, Apache Async Http
Client 4.x, OkHttp 3.9+ on the client side, any Servlet-API implementation or Jetty without
Servlets on the server side

« Additional support for async JAX-RS calls for Jersey Async Client 2.x, RestEasy Async Client 3.x,
Cxf Async Client 3.1.1+

+ Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
+ RMI

+ gRPC

* Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open them
at the same time in separate JProfiler top-level windows. This works with both live sessions as
well as with snapshots. If the target JVM is not currently open, or if CPU recording was not active
at the time of the remote call, clicking on a call site hyperlink will show an error message.

When tracking remote requests, JProfiler makes call sites and execution sites explicit in the call
trees of the involved JVMs. A call site in JProfiler is the last profiled method call before a recorded
remote request is performed. It starts a task at an execution site that is located in a different
VM. JProfiler allows you to jump between call sites and execution sites by using hyperlinks that
are shown in the call tree view.

174

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

I 100.0% - 4,665 ms - 5 inv. c.e.d.server.DemoServer$3.run
D— 100.0% - 4,664 ms - 3 inv. c.e.d.s.handlers.RequestHandler.run
() e—2,7% - 4,604 ms - 5 inv. c.e.d.s.handlers. RequestHandler.perfformWerk

() w— g5.5% - 4,128 ms - 5 inv. c.e.d.s.handlers. RequestHandler.makelpaCall

ml 6.9% - 323 ms - 5 inv. c.emock.MockHelper.runnable

(@12.3% - 109 ms - 5 inv. c.e.d.s.handlers.RequestHandler.makeRmiCall

0' 2.3% - 106 ms - 5 inv. c.e.d.s.handlers.HandlerHelper.makeRmiCall
W 15%- 70679 s - 5 inv. j.r.registry.Registry.lookup
0 0.6% - 28,505 ps - 3 inv. j.r.registry.LocateRegistry.getRegist
| " 0.1% - 6,695 ps - 15 inv. c.e.d.s.handlers.RmiHandler.remoteOperation [jproxy2.SProxy3] - jJump to execution site [call site: #1]

@ 0.9% - 42,143 ps - S inv. c.e.d.s.handlers.RequestHandler.makeHttpCall
0 0.0% - 12 ps - 5 inv. j.util. Random.nextint
@ 1.3% - 39,523 ps - 5inv. c.e.d.s.handlers.RequestHandlerworkWithGlobalResource
D 0.0%- 7 ps-1inv. c.e.d.s.handlers.RequestHandler.= clinit>

v @

Call sites have the same identity with respect to remote request tracking for all threads. This
means that when you jump from call sites to execution sites and vice versa, there is no
thread-resolution and the jump always activates the "All thread groups" as well as the "All thread
states" thread status selection, so that the target is guaranteed to be part of the displayed tree.

Call sites and execution sites are in a 1:n relationship. A call site can start remote tasks on several
execution sites, especially if they are in different remote VMs. In the same VM, multiple execution
sites for a single call site are less common because they would have to occur at different call
stacks. If a call site calls more than one execution site, you can choose one of them in a dialog.

An execution site is a synthetic node in the call tree that contains all executions that were started
by one particular call site. The hyperlink in the execution site node takes you back to that call
site.

Thread status: 0 Thread selection: Aggregation level:
o Allstates v | @ Al thread groups v | @ Methods =

0 W 72,87 - 152 5 - 8 inv, ju.concurrent, ThreadPoolExecutorSWorker.run
1 99.7% - 20,309 mz= - 15 inv. called from call site #1 (remote VM 22

@A“’ 7% - 20,306 ms - 15 inv. c.e.d.s.handlers.RmiHandlerlmpl.performWerk
G5906,0% - 12,559 ms - 13 inv. c.e d.s.handlers.RmiHandlerimpl.executeldbcStaternents
U591 3.3% - 6,820 ms - 15 inv. c.e.d.s.handlers.RmiHandlerlmpl.makeHttpCalls
m 0.4% - 926 ms - 13 inv. c.e.mock.MockHelper.runnable
@ 0.0% - &7 ps - 15 inv. j.util. Random. nextint
@14.0%- 8,304 ms - 120 inv. c.e.d.s handlers. DemoHttpServerS1.handle
0- 27.2% - 36,888 ms - 1 inv. c.e.d.s.test.RemoteDemoServer.main

v @

If the same call site invokes the same execution site repeatedly, the execution site will show the
merged call tree of all its invocations. If that is not desired, you can use the exceptional
methods [p. 191] feature to split the call tree further, as shown in the screen shot below.

175

Thread status: 0 Thread selection: Aggregation level:
o Allstates v | @8 All thread groups v | @ Methods ~

0_ 100.0% - 146 s - 10 inv. j.u.concurrent. ThreadPoolExecutorSWorker.run
"1 ®11.4% - 16,661 ms - 15 inv. called from call site #1 (remote VM #3
#3910 6.2% - 9,138 ms - 10 inv. c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [merged exceptional runs]
v 1.1% - 1,642 ms - 1 inv. c.e.d.s.handlers.RmiHandlerimpl.re
@A“) 1.1% - 1,642 ms - 1 inv, c.e.d.s.handlers.RmiHandlermpl.performWork
U549 0.7% - 959 ms - 1 inv. c.e.d.s.handlers.RmiHandlerlmpl.executeldbcStatements
455 0,5% - 665 ms - 1 inv. c.e.d.s.handlers.RmiHandler mpl.makeHttpCalls
0.0% - 17,466 ps - 1inv. c.emock.MockHelper.runnable
0 0.0% - 4 ps - 1 inv. jutil.Random.nextint
%"D 1.0% - 1,522 ms - 1inv. c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
@A@ 1.0% - 1,469 ms - 1inv, c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
U39 1.0% - 1,468 ms - 1inv. c.e.d.s handlers RmiHandlerlmpl.remoteOperation [exceptional run]
@A@ 1.0% - 1,413 ms - 1inv. c.e.d.s.handlers.RmiHandlerimpl.remoteOperation [exceptional run]
@14.2%- 6,131 me- W inv. c.e.d.s.handlers.DemoHttpServeril.handle

v @

Unlike execution sites which are only referenced from a single call site, call sites themselves can
link to several execution sites. With the numeric ID of a call site, you can recognize the same call
site if you see it referenced from different execution sites. In addition, a call site displays the ID
of the remote VM. The ID of the profiled VM can be seen in the status bar. It is not the unique
ID that JProfiler manages internally, but a display ID that starts at one and is incremented for
each new profiled VM that is opened in JProfiler.

@
+* @ 3 active recordings € Auto-update5s 00:11 & Profiling

176

B.3 Viewing Parts Of The Call Tree

Call trees often contain too much information. When you want to reduce the displayed detail,
there are several possibilities: you can restrict the displayed data to one particular subtree,
remove all unwanted data, or use a more coarse-grained filter for displaying method calls. All
of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each subtree can
be analyzed separately. Once you have found the entry point to such a subtask, the surrounding
call tree is only a distraction and the timing percentages in the subtree inconveniently refer to
the root of the entire call tree.

To focus on a particular subtree, JProfiler offers the Set As Root context action in the call tree and
the allocation call tree views.

Thread status: 0 Thread selection: Agagregation level:
== Runnable = . All thread groups hd @ Metheds

0— 100.0% - 2,937 ms - 1inv, CompileTest.main
() m— 93,59 - 2,746 ms - 1 inv. com.sun.tools javac.api.JavacTasklmpl.call
(D) e—g3,5% - 2,746 ms - 1inv. com.sun.toolsjavac.apiJavacTaskimpl.doCall
0— 93.5% - 2,746 ms - 1inv, com.sun.tools,javac.main.Main.compile
() — 73, 5% - 2,307 ms - 1 inv. com.sun.tools javac.main.JavaCompiler.compile

®- 41.6% - 1,220 ms - 1 inv. cDm.sun.too\s.Java(.maln.JavaCDmEHer.comElleE

=2 Show Call Graph mp.Enter.main

: Show Threads

laskListener.isEmpty
Add Method Trigger

G @ Add As Exceptional Method Compiler parseFiles
@ < Split Method with a Script vaCompiler.initProcessAnnotations

@ Intercept Method With Script Probe :ompiler.close .
P P
. o ~ ompiler.precessAnnotations

vierge splitting leve - ‘' JavacProcessingEnvironment.close
mpiler.stoplfErrar

d

q

qd

q

d Sg Remove Selected Sub-Tree Delete | ove

[R ees Ctrl+Alt+5 mpiler.now

G aut

E @ Show Tree Legend
[l i Show Mode Details CurlAlt+l Fompilerinstance
@0 = Show Source F4 rocesshrgs
@ 0 i shon byecode ot
@ 0 . ult.<clinit=

Expand Multiple Level
[V ? pand Mutiple Levels dLine.parse
@ o #* Collapse All e
@ 0 ler.close
W o @_SetAs Root Ctrl+Alt+R
@ o Reset Root A A +Alt+Shift+R
o
E Analyze »

@

—~

After setting a call tree root, information about the selected root is shown at the top of the view.
A single scrollable label shows the last few stack elements leading up to the root and a detail
dialog with the entire stack of the call tree root can be displayed by clicking on the Show More
button.

177

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

Calltree root: | com.sun.toolsjavac.main.JavaCompiler.enterTrees — com.sun.tools.javac.main.JavaCompiler.compile — ¢+ Show more x

() m—1()0.0% - 956 ms - 1 inv. com.sun tools.javac.comp.Enter.main
() e—100,0% - 956 ms - 1inv. com.sun.toolsjavac.comp.Enter.complete
() m— 52.1% - 651 ms - 1inv. com.sun toolsjavac.codeS * o o '
() ™™ 37.9% - 267 ms - 1 inv. com.sun.toolsjavac.comp.Entt © Call Tree Root X
@‘ 3.9% - 37,543 ps - 1inv. com.sun.toolsjavac.comp.Anng
@ 0.0%-6ps-1inw. com.sun.tools javac.util.ListBuffer.<in
m 0.0% - 5 ps - 2 inv. java.util.lterator.hasMext CompileTest.main(java.lang.String[1)
g gg::j:z} :::Ijc:vraﬂ:tuilnlf::f‘;{?:tlumIILIStEUFfema com.sun.toolsjavac.apiJavacTaskimpl.call()
@ 0.0% - 2 ps - T inv. com.sun.toolsjavac.util.List.iterator
@ 0.0% - 1 ps - 1inv, com.sun.toolsjavac.comp.Annotate.
@ 0.0% - 20 ps - 1 inv. java.util.Set.add
@ 0.0% - 2 us - 2 inv. com.sun.tools,javac.api.MultiTaskListener.is| com.sun.tools.javac.main.JavaCompiler.enterTrees(com.sun.tools jar
g 0.0% - 2 us - 2 inv. java.util Iterator.hasMext
0.

.0% - 1 ps - 1inv. java.util lterator.next

Complete stack trace of the call tree root:

com.sun.toolsjavac.apiJavacTaskimpl.doCall()
com.sun.tools.javac.main.Main.compile(java.lang.String[], java.lang

com.sun.tools.javac.main.JavaCompiler.compile(com.sun tools.java

ML

When you use the set root action recursively, the call stack prefixes will simply be concatenated.
To go back to the previous call tree, you can either use the Back button of the call tree history
to undo one root change at a time, or the Reset Root And Show All action in the context menu to
go back to the original tree in a single step.

Start Session Wiew Show Show

= Ef t =T 0@ o = [

Cemter Settings "% Bookma EREE oo BED B s | ey G
‘ Thread status: 0 Thread selection: Aggregation level:
Telemetries
B Runnable v | @8 All thread groups v | @ Methods =

What is most important about changing the call tree root, is that the hot spots view will show
data that is calculated for the selected root only, and not for the entire tree. At the top of the
hot spots view, you will see the current call tree root just like in the call tree view to remind of
you the context of the displayed data.

Thread status: 0 Thread selection: Aggregation level: Hot spot options:
BN Runnable = a All thread groups hd @ Methods Self times hd
Calltree root: | com.sun.toolsjavac.mainJavaCompiler.enterTrees — com.sun.toolsjavac.main.JavaCompiler.compile — ¢+ Show more x
Hot Spot Self Time Average Time Invocations
i com.sun.toolsjavac.utilList.reverse I 73,056 s (7 %) 18 ps 4,020
% com.sun.tools.javac.util.List.prependList I 1,340 us (7 %) 30 ps 2,357
& com.sun.toolsjavac.util.List.<init> I 7065 s (7 %) Ops 298,479
i. com.sun.toolsjavac.file ZipFilelndexSZipDirectory.readEntry NN 5,170 ps (6 %) 2ps 26,873
% com.sun.tools.javac.util.List.nenEmpty I 55,241 s (6 %) Ops 591,329
% java.util AbstractCollection.<init> I 21,504 ps (3 %) Ops 288,479
i com.sun.toolsjavac.util.List.setTail I 29,018 ps (3 %) 0ps 291,360
1. com.sun.tools.javacfile ZipFilelndexSEntry.compareTo(av.., [21,872 ps (2 %) Ops 91,521
i, com.sun.toolsjavac file ZipFilelndexSEntry.compareTo(co... [21,785 ps (2 %) 0ps 91,521
1 jeva.util.Map.qet I 12,226 ps (1 %) Ops 50,074
% java.util Arrays.sort I 16,364 us (1 %) 818 ps 20
1, com.sun.toolsjavacfileZipFilelndex.get4BytelittieEndian [l 14,128 ps (1 %) 0ps 133,230
1. com.sun.tools.javac file ZipFilelndex.qet?BytelittleEndian [l 12,811 ps {1 %) Ops 107,712
% javalang.String.compareTo W 12328 s (1%) Ops 92,814
%, com.sun.toolsjavac file.RelativePathSRelativeFile.<init>(c... [l 10,514 ps (1 %) Ops 11,788
% com.sun.tools.javac.util.Name.qetBytes W 10,141 ps {1 %) Ops 14,898
% com.sun.toolsjavac.fileZipFilelndexSZipDirectory.buildin.. [l 8,811 ps (0 %) 440 ps 20
. com.sun.tools.javac.util. SharedMameTable fromUtf W 2,390 ps (0 %) Ops 11,657
S U S W 7 onn .- oo N 70 ce0

Removing parts of the call tree

Sometimes it's helpful to see how the call tree would look like if a certain method was not present.
For example, this can be the case when you have to fix several performance problems in one
g0, because you are working with a snapshot from a production system that cannot be iterated

178

quickly like in your development environment. After solving the main performance problem, you
then want to analyze the second one, but that can only be seen clearly if the first one is eliminated
from the tree.

Nodes in the call tree can be removed together with their subtrees by selecting them and hitting
the Del et e key or by choosing Remove Selected Subtree from the context menu. Times in ancestor
nodes will be corrected accordingly as if the hidden nodes did not exist.

Thread status: 0 Thread selection: Aggregation level:

B Runnable v | @8 Al thread groups v | | @ Methods

v (D) — 03 5% - 2,746 ms - 1inv. (nm‘sun‘tn'uls.java.(.mam.Main‘(lurnpile
() w— 75 6% - 2,307 ms - 1inv. com.sun.toolsjavac.mainJavaCompiler.compile

() . 11,6% - 1,220 ms - 1 inv. com.sun.toolsjavac.mainJavaCompiler.compile2

=3 Show Call Graph mp.Enter.main
: Show Threads

laskListener.isEmpty
Add Method Trigger

G @ Add As Exceptional Method Compiler.parseFiles

@ =< Split Method with a Script vaCompiler.initProcessAnnotations
a @ Intercept Method With Script Probe rompiler.close
[) . ompiler.processAnnotations
Merge splitting leve AR JavacProcessingEnvironment.close
c il
npiler.stoplfError
é@ Remove Selected Sub-Tree Delete er:wve P
q o s Ctrle A5 mpilennow
G aut
L A
E @ Show Tree Legend
[m]] o, Show Node Details Carl+Alt+l - Fompiler.instance
= Show Source F4
H Chee Pibarnds z 0

There are three removal modes. With the Remove all invocations mode, JProfiler searches for all
invocations of the selected method in the entire call tree and removes them together with their
entire subtrees. The Remove subtree only option only removes the selected subtree. Finally, the
Set self-time to zero leaves the selected node in the call tree bug sets its self-time to zero. This is

useful for container nodes like Thr ead. run that may include a lot of time from unprofiled
classes.

@ Remove Mode X

There are several ways to remove the selected node:

) Remove all invocations of the | selected method | @)
Remove sub-tree only @)

Set self-time to zero ﬂ

Just like for the Set As Root action, removed nodes influence the hot spots view. In this way, you
can check what the hot spots would look like if those methods were optimized to the point of
not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views will show
a line with the count of the removed nodes and a Restore Removed Subtrees button. Clicking on

that button will bring up a dialog where you can select removed elements that should be shown
again.

179

Thread status: 0 Thread selection: Aggregation level:
B Runnable v | @8 All thread groups v | @ Methods ~

Removed nodes: | 1 removed node SE

(D) — (.3 - 1,789 ms - 1inv. com.sun.tools.javac.main.Main.compile

(L) m— 2.0 - 1,351 ms - 1 inv. com.sun.toelsjavac.mainJavaCompiler.compile
() w51 6% - 1,220 ms - 1inv. com.sun.tol
@l 5.1% - 101 ms - 1inv. com.sun.tools,javac
@ 14% - 28,429 ps - 1inv, com.sun.tools.javi
@ 0.0%- 493 ps - 1inv. com.sun.toels javact
@ 0.0% - 27 ps - 1inv, com.sun.toolsjavac.m @ com.sun.toclsjavac.mainJavaCompiler.enterTrees(com.sun.tools,jay

@ 0.0% - 10 ps - 1inv, com.sun.tools,javac.pl

0.0% - 7 ps - 1 inv. com.sun.tools.javac.mz

0% - T ps - 1inv, cem.sun.toolsjavac.uti

0% - 4 ps - 1inv, com.sun.tools,javac.ma

[m]

@ o

@o

@ 0.0%-3ps-1inv. com.sun.tools.javac.uti
Do

Do

Do

@ Select Removed Nodes to be Restored *

Currently remeved nodes:

0% - 1 ps - 2inv, java.lang.StringBuilder.

0% - 1 ps - 3 inv, java.lang.StringBuilder.

0% - 1 ps - 2 inv. java.lang.5tringBuilder]
21.0% - 413 ms - 1 inv, com.sun.teolsjavac,
1% - 2,483 ps - 1 inv. com.sun.toels javac.m
0% - 670 ps - 1 inv. com.sun.tools.javac.mai
0% - 427 ps - 1 inv, com.sun.toolsjavacfile)
0

0% - 36 ps - 1inv. com.sun.tools.javac.main 0K Cancel

ML

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots view is
the view filter. When you change your call tree filters, it has a large effect on the calculated hot
spots [p. 52]. To emphasize this interdependence with the call tree view, the hot spots view
shows the call tree view filter in a line above the view together with a button to remove the
additional filters.

Thread status: o Thread selection: Aggregation level: Hat spot options:

B Runnable v | @8 Allthread groups v | (@ Methods + Selftimes -
Call tree root: com.sun.toolsjavac.mainJavaCompiler.generate — com.sun.toolsjavac.mainJavaCompiler.compil + Show mere x
Removed nodes: 3 removed nodes Sg
Call tree view filters: | com.sun.tools x |

Hot Spot Self Time Average Time Invocations
i java.io.OutputStream.close I 0509 s (6 %) 909 ps 12
% com.suntools.javacjvm.Gen.genMethod I 7740 s (4 %) 151 ps 3
i java.io FileOutputStream. <init> I G427 ps (4 %) 535 ps 12
% com.suntools.javacivm.GeninitCode I 767 us (3 %) 93 s 3
& com.sun.toolsjavacjvm.Code <init> s 2% 66 ps Al
i com.sun.toolsjavac.jvm.Code.emitStackMapFrame I 2067 s (1%) 105 ps 29
% com.sun.tools.javacjvm.Pool.makePoolValue I 2597 ps (1 %) Tus 1,696
i com.sun.toolsjavac.jvm,ClassWriterSCWSignatureGenerat.., [l 1,907 ps (1 %) 3ps 585
%, com.sun.toolsjavac.code TypesSDescriptorCache findDes... [l 1,662 ps {1 %) 207 ps 8
% com.sun.tools.javacjvm. ClassWriterwritePool M 1,655 us (1%) 137 ps 12
% com.sun.tools.javac.codeKinds.kindMame W 1,636 ps (1 %) 818 ps 2
% com.sun.tools.javac.jvm.Gen.setTypeAnnotationPositions [l 1,602 ps {1 %) Bpus 145
% com.sun.teools.javacjvm.Pool.put M 1,570 ps (0 %) Ops 1,696
& com.sun.toolsjavac.codeType.hasTag W 1,351 ps (0 %) 0ps 3,928
_com cun tanle imrar coda Tinec 2R et laceTma | R/ I LA e 770
v @

Setting a call tree root, removing parts of the call tree and view filters can be used together, with
the limitation that view filters have to be set last. As soon as view filters are configured in the
call tree, the Set As Root and >Remove Selected Subtree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a graph that
is limited to the same call tree root, does not include the removed methods and uses the
configured call tree view filters. At the top of the graph, the information about these changes is
displayed in a similar form as in the call tree.

180

@ Create Call Graph X

1. Select graph options Select options for the call graph

2. Select first node

When creating a new graph in the graph view itself, check boxes in the wizard let you choose
which of these call tree adjustment features should be taken into account for the calculation of
the call graph. Each check box is only visible if the corresponding feature is currently used in the

call tree view.

Thread status:

== Runnable
View filters:
Call tree root:

Removed nodes:

The call graph can be calculated for all threads, a thread group or a single thread as
well as for any aggregation level. The thread status selection determines the meaning
of times that are displayed in the call graph.

Thread selection: | 88 All thread groups hd
Thread status: == Runnable v
Aggregation level: | (@) Methods b

Use root that was set in the call tree view
Use view filter that was set in the call tree view

Remove nodes that were removed in the call tree view

Mext P Cancel

Thread selection:
88 All thread groups @ Methods
com.sun.tools

com.sun.tools javac.main.JavaCompiler.generate — com.sun.teols.javac.mainJavaCompiler.compile? — comr v Show more

3 removed nodes

Show more

visitMethodDef :’—>
109 ms, 153 us self, 51 inv.

c.stjjvm.Gen

c.stjjvm.Gen
gensStat
86,321 us, 247 us self, 255

H|%||e | =

c.s.tjjvm.Code
a endScopes
1,439 us, 67 us self, 11010r

181

Aggregation level:

B.4 Splitting The Call Tree

Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points so
you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into the call
stack and show semantic information that has been extracted from the method invocation above
the inserted node. These splitting nodes allow you to see additional payload information directly
inside the call tree and to analyze their contained subtrees separately. Each splitting type can
be merged and unmerged on the fly with the actions in the context menu and has a cap on the
total number of splitting nodes so that the memory overhead is bounded.

Call tree splitting and probes

Probes [p. 104] can split the call tree according to the information that they collect at selected
methods of interest. For example, the "HTTP server" probe splits the call tree for each different
URL. The splitting in this case is highly configurable, so you can include only the desired parts of
the URL, some other information from the servlet context or even produce multiple splitting
levels.

” Thread status: 0 Thread selection: Aggregation level:
Telemets
Slemetnes BN Runnable & All thread groups hd @ Methods

ﬁ_ 69.1% - 4,58% ms - 7 inv. com.ejt.demo.server.DemoServers3.run

,‘:‘. Live Memory 0% - 3,585 ms - 4 inv. HTTP: /demo/viewd
Q_ 34.0% - 3,383 ms - 4 inv. com.gjt.demo.server.handlers.RequestHandler.run
() m—53,1% - 3,525 ms - 4 inv. com.ejt.demo.server.handlers.RequestHandler. performWork

o

'ﬁ Heap Walker @ 0.9% - 58,710 ps - 4 inv. com.ejt.demo.server.handlers.RequestHandler.workWithGlobalRes
ol 10.2% - 677 ms - 1 inv. HTTP: /demo/view]
@l 3.3% - 220 ms - 1inv. com.gjt.dema.server.handlers.JdbclobHandler.run

I CPU Views @ 1.5% - 100 ms - 1 inv. com.gjt.demo.server.handlers.JmsHandler.onMessage

@ 0.0%- 3B s - 1inv. com.gjt.demo.server.handlers msHandlerSImsType. <clinit>
@ 0.0%- 9 ps- 1inv. com.gjt.demo.server.handlers. RequestHandler. < clinit>
@ 0.0% - 5 ps - 2inv. com.ejt.demo.server.handlers.JmsHandlerSJmsType.values
@ 0.0%-1us-Tinv, com.ejt.dema.server handlersJmsHandlerSmsType.getDestination
@‘ 19.9% - 1,321 ms - 8 inv. java.util.concurrent. ThreadPoolExecutorSWerker.run
Call Graph W17.7%- 508 ms -1 inv. java.awt.EventDispatchThread.run
W133%-217 ms- 1inv. com.ejt.dema. server.gui.GuiDemaoServer$151.run

Call Tree

Hot Spots

Qutlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads v @

If you write your own probe, you can split the call tree in the same way, with both the
embedded [p. 164] and the injected [p. 159] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available for probes can be used directly in the call tree,
with the Split Method With a Script action. In the screen shot below, we want to split the call tree
for a JMS message handler to see the handling of different types of messages separately.

182

Aggregation level:

Thread status: 0 Thread selection:
v (D Methods +

B Runnable v | @8 All thread groups

n N £3.1% - 4,589 ms - 7 inv. com.ejt.demo.server.DemaServerS3.run
ﬂ W 540% - 3,585 ms - 4 inv. HTTP: /demo/viewd
() . 54.0% - 3,585 ms - 4 inv. com.ejt.deme.server.handlers. RequestHandler.run
() 53,19 - 3,525 ms - 4 inv. com.ejt.demo.server.handlers.RequestHandler.performWark
@ 0.9% - 38,710 ps - 4 inv. com.ejt.dema.server.handlers.RequestHandler.workWithGlobalResource
@ 10.2% - 677 ms - 1 inv. HTTP: /demo/view1
0‘ 3.3% - 220 ms - 1 inv. com.gjt.demo.server.handlers.JdbclobHandler.run

¥ m 1,5% - 100 ms - 1inv. com.ejt.demo.server.handlersJmsHandler.onMeszsag,
(@ 1.5%- 98,2321 ps - 1inv. com.gjt.demo.server.handlersJmsHandler.hang =5 Show Call Graph
0 1.0% - 63,679 ps - 1inv. com.gjt.demo.server.handlers.JmsHandler.p : Show Threads
@ 0.5% - 35,137 ps - 1 inv. com.ejt.demo.server.handlers.JmsHandler.n
.0% - 36 ps - 1 inv. com.gjt.demo server.handlers.JmsHandlerSJmsType.<¢ Add Method Trigger
.0% - 9 s - 1inv. com.gjt.demo.server.handlers.RequestHandler. < clinit» .
(@) Add As Exceptional Method

0

0

0% - 5 ps - 2 inv, com.gjt.demo.server.handlers.JmsHandlerSJmsType.valy
0%- 1 ps - 1 inv. com.ejt.dema.server.handlersJmsHandlerSimsType.get| *< Split Method with a Script |
LB Bm 1,321 ms - 8 inv. java.util.concurrent. ThreadPoolExecutorSWorker.rui © Inter(apt Methad With Script Probe

7.7% - 508 ms - 1 inv, java.awt.EventDispatchThread.run

33 - 217 ms - 1inv. com.ejt.demo.server.gui.GuillemoServer§1§1.run t

0.
0.
0.
0.
9

5= Remove Selected Sub-Tree Delete

T Add Filter From Selection 3

@ Show Tree Leaend

Instead of writing a probe, you just enter a script that returns a string. The string is used for
grouping the call tree at the selected method and is displayed in the splitting node. If you return
nul |, the current method invocation is not split and added to the call tree as usual.

@ Settings Edit Search Code Help Edit x
(48 = . \
B & PR 2 % O
Show. Modify Test
U Copy Cut Paste o Find Replsce o G Help
Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:
- com jprofiler.api.agent.ScriptContext scriptContesxt
- jgva.lang.Class<?> ¢
- com.gjt.demo.server.handlers JmsHandler currentObject
- javax jms.Message message
The expected return type is java.lang.String
Script:
; ;]
1 Inessage‘ getJMSDestination() .toString ()

The script has access to a number of parameters. It is passed the class of the selected method,
the instance for non-static methods, as well as all method parameters. In addition, you get a
Scri pt Cont ext object that can be used to store data. If you need to recall some values from
previous invocations of the same script, you can invoke the get Obj ect/ put Obj ect and
get Long/ put Long methods in the context. For example, you may want to split only the first
time a particular value for method parameter is seen. You could then use

if (scriptContext.getObject(text) !'= null) {
scri pt Cont ext . put Obj ect (text);
return text;

} else {
return null;

}

183

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the screen shot
above, we now see the handling code for each JMS message destination separately.

@ . 54 4% - 29,478 ms - 10 inv. java.util.concurrent. Thread PoolExecutorSWorker.run
0 B 35.6% - 16,265 ms - 7 inv. com.gjt.demo.server.DemoServerS3.run
@1 7.6% - 3,429 ms - 4inv. HTTP: /demo/view2
@1 7.2% - 3,270 ms - 4 inv. HTTP: /demo/view3
@ 154%- 2,483 ms - 3 inv. HTTP: /demo/view5
al 53.2% - 2,377 ms - 3 inv. HTTP: /demo/view1
@147%-2133 ms - Zinv. com.gjt.demo.server.handlers.JdbcJobHandler.run
a‘ 3.8%- 1,738 ms - 2 inv, HTTP: /demo/viewd
@ 0.8% - 388 ms - 5 inv, com.gjt.demo.server.handlers.JmsHandler.onMessage
=< 0.5% - 216 ms - 1inv. paymentProcessor
v 0.2% - 110 ms - 2 inv. deliveryService
@ 0.2%- 110 ms - 2 inv. com.ejt.demo.server.handlers.JmsHandler.handleMessage
@ 0.2% - 105 ms - 2 inv. com.gjt.demo.server.handlers.JmsHandler.performWork
0 0.0% - 2,697 ps - 2 inv. com.gjt.demo.server.handlers.JmsHandler.makeHttpCall
@ 0.0%- 2,404 ps - Zinv. com.gjt.demo.server.handlers.JmsHandler.makeRmiCall
=G 0.1% - 54,488 s - 1 inv. orderHandler
0 0.0% - 1,613 ps - 1inv. com.gjt.demo.server.handlers.JmsHandler. handleMessage
@ 0.8% - 353 ms - 5 inv, com.gjt.demo.server.handlers.RequestHandler.run
@ 0.0% - 29 ps - 8 inv. com.gjt.demo.server.handlersJmsHandlerSImsTypevalues
@ 0.0%-2us-4inv. com.gjt.dema.server.handlers msHandlerSimsType.getDuration
@ 0.0%- 1ps - 4inv. com.gjt.demo.server.handlers.JmsHandlerSImsType.getDestination

The splitting location is bound to a method, not to the selected call stack. If the same method is
present somewhere else in the call tree, it will be split as well. If you use the Merge splitting level
action, all splits will be merged into a single node. That node gives you a chance to unmerge the
split again.

Aggregation level:
v | @ Methods ~

Thread status: 0 Thread selection:
== Runnable + 88 Allthread groups

b I 53.0% - 36,304 ms - 10 inv. java.util.concurrent. ThreadPoolExecutorSWaerker.run
0 W 37.0% - 21,282 ms - 7 inv. com.ejt.demo.server.DemoServerS3.run

a 17.6% - 4,402 ms - 3 inv, HTTP: /demo/view2

@1 6.9% - 3,950 ms - 5 inv. HTTP: /demo/view1

@1 6.3% - 3,636 ms - 4inv. HTTP: /demo/view5

@1 5.7% - 3,272 ms - 4 inv. HTTP: /demo/view3

@1 4.6% - 2,676 ms - 3 inv. HTTP: /demo/viewd

0 14.4% - 2,538 ms - 11 inv. com.ejt.demo.server.handlers.JdbclobHandler.run

@ 0.8% - 440 ms - 6 inv, com.ejt.demo.server.handlersJmsHandler.onMessage
¥ - 0.8%- 433 ms - 5 inv. merged method spli |
@ 0.8%- 433 ms - 5 inv. com.ejt.demo.ser Show Call Graph
@ 0.0% - 1,613 |.|§ - 1inw, (D.m‘ejt.demo.serve : Show Threads
@ 0.6% - 359 ms - 5 inv. com.ejt.demo.server hat
0 0.0% - 45 ps - 10 inv. com.gjt.demo.server.han Add Method Trigger
@ 0.0% - 3 ps - 3 inv. com.gjt.demo.server.handl
@ 0.0%-2ps-5inv. com.gjt.demo.server.handl

Add As Exceptional Method

Split Method with a Script

Intercept Method With Script Probe

I x Unmerge splitting level Ctrl+Alt+M
3= Remove Selected Sub-Tree Delete
Restore Removed Sub-Trees Ctrl+Alt+5

Add Filter From Selection

@ Show Tree Legend
. Show Node Details Ctrl+Alt+|

Show Source F4
@

Show Bytecode

If you produce too many splits, a node labeled capped method splits will contain all further split
invocations, cumulated into a single tree. With the hyperlink in the node, you can reset the cap
counter and record some more splitting nodes. For a permanent increase in the maximum
number of splits, you can increase the cap in the profiling settings.

184

Thread status: o Thread selection: Aggregation level:

B Runnable v | @8 All thread groups v | @ Methods ~

0_ 62.8% - 29,033 ms - 11 inv. java.util.concurrent. ThreadPoolExecutorSWorker.run
@ . 54,7% - 25,294 ms - 383 inv. com.gjt.demo.server.handlers.DemoHttpServerS1.handle
() . 54.7% - 25,286 ms - 382 inv. com.gjt. meck.serviet. MockServiet.service
54.7% - 25,280 ms - 382 inv. HTTP: fexchangeRate
M 54.7% - 25,279 ms - 382 com.gjt.deme.server.handlers, DemoHttpServerSrun
54.6% - 25,224 ms E :
<, W 54.4% - 25,132 ms - 387 inv. capped method splits reset splitting cap counter €
m— 54,4% - 25,125 ms - 381 inv. com.gjt.mock.MockHelper.runnable
0 0.0% - 331 ps - 381 inv. java.util.concurrent. ThreadLocalRandom.nextint
D 0.0%- 388 us - 381 inv, java.lang.String.hashCode
0 0.0% - 372 ps - 381 inv, java.util.concurrent. ThreadLocalRandom.current
D 0.0% - 326 s - 381 inv. java.lang.String.equals
=< 0.2% - 75,634 s - 1inv, Time starmp: 1692953750811
@ 0.1% - 26,186 ps - 381 inv., com.sun.net.httpserver HttpExchange.sendResponseHeaders
m 0.0% - 8,588 ps - 381 inv. java.io.OutputStream.close
@ 0.0% - 8,646 ps - 382 inv. com.gjt.demo.server.handlers.DemoHttpServertoParameterMap
@ 0.0% - 2,259 ps - 381 inv. java.lang.String.valueOf
W 0.0%- 1,550 s - 381 inv. java.lang.String.getBytes
0 0.0% - 903 ps - 381 inv. java.io.OutputStream.write
m 0.0% - 388 ps - 381 inv. com.sun.net.httpserver.HttpExchange.getResponseBody
) 0.0% - 380 s - 382 inv. java.util. Map.get
D 0.0% - 296 ps - 382 inv. com.sun.net.httpserver.HttpExchange.getRequestURI

Qr ~ @

To edit split methods after you have created them, go to the session settings dialog. If you don't
need a particular split method anymore, but want to keep it for future use, you can disable it
with the checkbox in front of the script configuration. This is better than just merging it in the
call tree, because the recording overhead may be significant.

@ Session Settings X
g

‘<: This list contains methods that should be split into multiple branches in the
«call tree, similarly to request splitting of the "HTTP server” probe. A
configurable script returns a string that is displayed above the actual

Application Settings

method node. For example, you can split the call tree for different argument
E Call Tree Recording il
Method Call Recording If this feature is abused, the call tree can become very large, adding

significant overhead.

Exceptional Metheds
@ com.ejt.demo.server handlers msHandler.onMessage{javax.jms.Message) | =
Split Methods

Y Call Tree Filters
| Trigger Settings
; Databases

0 HTTP, RPC & JEE

Split by return value of script: | message.getlMSDestination()4 | - x

General Settings Copy Settings From “ Cancel

185

B.5 Call Tree Analyses

The call tree [p. 52] shows the actual call stacks that JProfiler has recorded. When analyzing the
call tree, there are a couple of transformations that can be applied to the call tree to make it
easier to interpret. These transformations can be time-consuming and change the output format
in a way that is incompatible with the functionality in the call tree view, so new views with the
results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call tree
analysis actions from the tool bar or the context menu.

t @ 07T < H

View Show Record o Show

BPot ¢ ings Help | end cPU Back Fomed o pn AmsbE
Show Flame Graph Ctrl+Alt+F
Thread status: @& Thread selection: Collapse Recursions Ctri+Alt+L | level:
B Runnable ~ 88 Allthread groups Calculate Cumulated Qutgoing Calls Ctrl+Alt+G s =

Calculate Backtraces To Selected Method Ctrl+Alt+B

0— 93.3% - 2,746 ms - 1 inv. com.sun.tools javac,
(D) — 736% - 2,307 ms - 1inv. com.sun.toolsjave Inline Async Executions Ctrl+Alt+E
() 41,6% - 1,220 ms - 1inv., com.sun.toolsjavac.mainJavaCompiler.compiled
() = 37.7% - 813 ms - 1inv. com.cun.tools.javac.main.JavaCompiler.attribute

@™ 377% - 813 ms - 1inv. com.sun.toolsjavac.comp.AttrattribClass
@ 0.0%-1ps-1inv. com.sun.toolsjavaciree)CTreehasTag
@ 0.0%- 7 ps - 2 inv. com.sun.tools.javac.util AbstractLog.useSource
@ 0.0%-4ps-Tinv. com.sun.toolsjavac.comp.CompileStates.isDone
@ 0.0%- 1 ps - 1inv. com.sun.tools javac.api. MultiTaskListener.isEmpty
Wi - T ps - Tinw. com.sun.tools.javac.main.JavaCompiler.errorCount
0.0%-1 Ti ls.j in.JavaCompil C
@163% - 184 ms - 1 inv. com.sun.toelsjavac.mainJavaCompiler.desugar
(@15.43% - 157 ms - 1 inv. com.sun.tools.javac.main.JavaCompiler.generate
@l 2.2% - 63,365 ps - 1 inv. com.sun.tools.javac.main.JavaCompiler.flow
@ 0.0% - 35 ps - 1 inv. com.sun.toolsjavac.mainJavaCompilerS2. < clinit>
@ 0.0% - 24 ps - 1 inv. com.sun.toclsjavac.main JavaCompiler.reportDeferredDiagnostics
@ 0.0%-16ps-1inv. com.sun.toolsjavac.comp. Tedo.poll
@ 0.0% - 7 us - 2 inv. com.sun.toels.javac.comp.Tode.size
@ 0.0%- 2 ps - 1inv. com.sun.tools.javac.main.JavaCompilerwarningCount
@ 0.0%-1Tus-2inv. com.sun.toolsjavac.mainJavaCompiler.printCount
@ 0.0%-1ps - 1inv. com sun.toelsjavac.util.Log.hasDiagnosticListener
()™ 32.6% - 956 ms - 1 inv. com.sun.tools.javac.main JavaCompiler.enterTrees

ML

A nested view will be created below the call tree view. If you invoke the same analysis action
again, the analysis will be replaced. To keep multiple analysis results at the same time, you can
pin the result view. In that case, the next analysis of the same type will create a new view.

@ 6.890 recursions were collapsed in the selected call tree fragment (7] x (=]
Thread status: Thread selection: Aggregation level:
== Runnable . All thread groups @ Methods

Calltree root: | com.sun toolsjavac.main.JavaCompiler.attribute — com.sun.toolsjavac.r* Show more

(¢ e— 100.0% - 813 ms - 12 inv. com.sun.toolsjavac.comp Attr.attribClass
)}y 100 092 - 812 me - M inv ram sun fanls avac camn B atbihClace

In live sessions, the result views are not updated together with the call tree and show data from
the time when the analysis was made. To re-calculate the analysis for the current data, use the
reload action. If the call tree itself has to be re-calculated, like in the allocation tree with disabled
auto-updates, the reload action takes care of that as well.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to analyze.
The "Collapse recursions" call tree analysis calculates a call tree where all recursions are folded.
The parent node of the current selection in the call tree serves as the call tree root [p. 177] for
the analysis. To analyze the entire call tree, select one of the top-level nodes.

186

” Telernetries @ 6,890 recursions were collapsed in the selected call tree fragment @ x (‘? @

Thread status: Thread selection: Aggregation level:

'i:l' Live Memory == Runnable 88 Al thread groups @ Methods
Calltreeroot: | com.suntoolsjavac.mainJavaCompiler.attribute — com.sun.toolsjavacr * Show more

]
Heap Walk:
ﬁ =L (D) @) m—100.0% - 13 ms - 12 inv. com.sun.tools javac.comp.Attr.attribClass
@G} E—100.0% - 813 ms - 31 inv, com.sun toolsjavac.comp.Attr.attribClass
. (@ C) m— 30,7 - 311 ms - 12 inv. com.sun.toclsjavac.comp.AttrattribClassBody
CPU Views @O 0.2% - 1613 . A o
2 0.2% - 1,613 ps - 12inv. com.sun.tools javac.comp.Attr.isSerializable
@G) 0.0% - 173 ps - 12 inv. com.sun.toolsjavac.code Lintaugment

4 Call Tree 0.0% - 175 ps - 24 inv. com.sun teolsjavac.util Abstractlog.useSource

Q0
@G} 0.0% - 162 ps - 12 inv. com.sun tools,javac.comp.Check.checkClassOverrideEqualsAn
Collapsed Recursions @G 0.0%-125ps- 31 inv, com.sun toolsjavac.code Types.supertype
@G} 0.0% - 72 ps - 12 inv. com.sun.toels.javac.comp.Check.checkFunctionallnterface
Hot Spots @@ 0.0% - 48 ps - 54 inv. com.sun.tools javac.code. Type.hasTag
@G 0.0%-35us-29inv. com.sun.toolsjavac.comp.Check.checkMonCyclic
Call Graph @G} 0.0% - 26 ps - 12 inv. com.sun.toels.javac.code.DeferredLintHandler.flush
Outlier Detecti @G) 0.0% - 24 ps - 12 inv. com.sun.tools.javac.comp.Check.checkDeprecatedAnnotation
utherLetection @G 00%-12us-11inv. com.sun.toolsjavac.comp. TypeEnvs.get
@@ 0.0%- 11 ps - 22 inv. com.sun.tools.javac tree)CTree.pos
C | Anal
omplexity Analysis @@ 0.0% -9 ps - 20 inv. com.sun.toolsjavac.comp.Check.setlint
Call Tracer moved 166 us - 19 inv. com.sun.teolsjavac.comp Attr.attribClass
JavaScript XHR v @

A recursion is detected when the same method was already called higher up in the call stack. In
that case, the subtree is removed from the call tree and stitched back to the first invocation of
that method. That node in the call tree is then prefixed with an icon whose tool tip shows the
number of recursions. Below that node, stacks from different depths are merged. The number
of merged stacks is shown in the tool tip as well. The total number of collapsed recursions is
shown in the header, above the information about call tree parameters that were set for the
original call tree.

(O () —100,0% - 313 ms - 12 inv. com.sun.toolsjavac.comp.Attr.attribClass
v m 100.0% - 813 ms - 31 inv. com.sun tools.javac.comp. Attr.attribClass

(0).(7) e— G0, 7%, - £11 ms - 12 inv. com.sun.tools.iavac.comp.Attr.attribClassBody

| 16 recursive calls have been stitched back to this node. IAttr.isSeriaIizabIe

@® 0.0%- 175 ps - 1Zinv. com sun.fools.javac.code Lint.augment

@ G) 0.0% - 173 ps - 24 inv, com.sun.toolsjavac.util AbstractLog.useSource

.0% - 162 ps - 12 inv. com.sun tools.javac.comp.Check.checkClassOverrideEqualsin
% - 125 ps - 31 inv. com.sun tools.javac.code Types.supertype

%% - 72 ps - 12 inv. com.sun.toolsjavac.comp.Check.checkFunctionallnterface

For a simple recursion, the number of merged stacks is the number of recursions plus one. So
a node whose recursion tool tip shows "1 recursion" would contain a tree with nodes that show
"2 merged stacks" in their recursion tool tip. In more complex cases, recursions are nested and
produce overlapping merged call trees, so that the number of merged stacks varies from stack
depth to stack depth.

At the point where a subtree is removed from the call tree to be merged higher up, a special
"moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one particular
call stack where that method has been invoked. The same method of interest may have been
invoked in different call stacks, and it's often useful to analyze a cumulated call tree of all those
invocations in order to get better statistics. The "Calculate cumulated outgoing calls" analysis
shows a call tree that sums all outgoing calls of a selected method, regardless of how the method
was invoked.

187

” Telernetries 145 top-level call sites of the selected method were merged (7] x @? (=]

Thread status: Thread selection: Aggregation level:
'i:l' Live Memory == Runnable 88 Al thread groups @ Methods
Collapse 333 recursions in the merged call tree fragment
]
'ﬁ Heap Walker @D+) w—100.0% - 545 ms - 661 inv. com.sun.toolsjavac.code.SymbolSClassSymbol.complete
(@) w— 09,93 - 944 ms - 727 inv. com.sun.toolsjavac.code Symbol.complete
(@) m— 17% - 866 ms - 169 inv. com.sun.tools javac.jvm.ClassReader$1.complete
I CPU Views (D @) —01,7% - 866 ms - 169 inv. com.sun.toelsjavac,jvm.ClassReader.complete
@G) W 55,77 - 620 ms - 28 inv. com.sun.toolsjavac,jvm.ClassReader fillln{com.sun.tc
4 Call Tree @G ™ 253%- 238 ms - 141 inv. com.sun.tools.javac.jvm.ClassReader fillln{com.sun.tool:
@G} 0.3% - 3,190 ps - 133 inv. com.sun.teclsjavac.comp.Annotate.flush
Cumulated Outgoing @@ 0.2%- 1,970 us - 141 inv. com.sun.tocls,javac,jvm.ClassReader.completeEnclosing
@@ 0.1%- 615 ps - 141 inv. com.sun.toolsjavac.code.ScopeSErorScope. <init>
Hot Spots @@ 0.0%- 107 us - 14 inv. com.suntoclsjavac,jvm.ClassReader.completeOwners
@@ 0.0%-53 ps- 100 inw. com.sun.toolsjavac.comp.Annotate.enterStart
Call Graph @@ 0.0%- 42 ps-95inv. com.sun toolsjavac.comp.Annotate. enterDoneWithoutFlush
@l T.7% - 72,882 s - 12 inv. com.sun.toolsjavac.comp.MemberEnter.complete
Outlier Detection @ 0.4%- 4,017 ps - 3 inv. com.sun.tools javac.code Symtabs2.complete
@® 0.1% - 830 ps - 2 inv. com.sun tools.javac.code.Symtab$1.complete
Complexity Analysis @G 0.0%- 118 ps - 16 inv. com.sun teolsjavac.code TypeSErrorType. <init>
Call Tracer
JavaScript XHR - o

For the selected method, JProfiler collects all its top-level invocations without considering recursive
calls and cumulates them in the result tree. The header shows how many such top-level call sites
were summed in that process.

At the top of the view, there is a checkbox that allows you to collapse recursions in the result
tree, similar to the "Collapse recursions" analysis. If recursions are collapsed, the top level node
and the first level of outgoing calls show the same numbers as the method call graph.

Calculating backtraces

The "Calculate backtraces" analysis complements the "Calculate cumulated outgoing calls"
analysis. Like the latter, it sums all top-level calls of the selected method without considering
recursive calls. However, instead of showing outgoing calls, it shows the back traces that contribute
to the invocations of the selected method. The call originates at the deepest node and progresses
toward the selected method at the top.

” Telemetries Merged backtraces for 166 call sites of the selected method @ x & Q
Thread status: Thread selection: Agagregation level: Summation mode:
‘i:l. Live Memory B Runnable B8 Allthread groups @ Methods Total times
Collapse 322 recursions in the merged call tree fragment
’
WG Heep Walker @+ () em—100).0% - 945 ms - 661 hot spot inv. com.sun.toolsjavac.code Symbol$ClassSymbol.c
() m— 0,0% - 651 ms - 59 hot spot inv. com.sun.tools.javac.comp.Enter.complete
@@ 184%-78,939 pc - 18 hot spot inv. com.sun.tools.javac.jvm.ClassReader.loadClass
I CPU Views (@17.0% - 66,024 ps - 29 hot spot inv. com.sun.teolsjavac.code. SymbolSClassSymbol flags

@G} 15.0% - 46,914 ps - 12 hot spot inv. com.sun.toels javac.comp.AttrvisitClassDef

(@)1 3.8% - 35,643 s - 9 hot spot inv. com.sun.tools javac.code. Symbol$ClassSymbol.members

@12.2%- 21,012 ps - 7 hot spot inv. com.sun toolsjavac.code. TypeSClassType.complete

@1 2.0% - 18,465 ps - 41 hot spot inv. com.sun.toolsjavac.code.Symbol$ClassSymbol getinterfaces

@@ 1.5%- 14,090 ps - 14 hot spot inv. com.sun.toolsjavac.jvm.ClassReaders2.getEnclosing Type

Hot Spots @ 1.3% - 12,088 ps - 66 hot spot inv. com.sun.tools,javac.code.SymbaolSClassSymbol.getSuperclass
@G) 0.0% - 183 s - 406 hot spot inv. com.sun.teolsjavacjvm.ClassWriter.enterlnner

4 Call Tree

Backtraces

Call Graph

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR - o

This analysis is similar to the hot spots view, only that by default it sums total times instead of
self-times for the selected method, and the hot spots view only shows methods whose self-time
is a significant fraction of the total time. At the top of the view there is a radio button group

188

labeled Summation mode that can be set to Self times. With that selection, the summed values
for the selected method match that of the default mode in the hot spots view.

In the back traces, the invocation counts and times on the back trace nodes are only related to
the selected method. They show how much the invocations along that particular call stack have
contributed to the values of the selected method. Similar to the "Calculate cumulated outgoing
calls" analysis, you can collapse recursions and the first level in the backtraces is equivalent to
the incoming calls in the method call graph.

Call tree analyses in the call graph

In the call graph, each method is unique while in the call tree methods can occur in multiple call
stacks. For one selected method, the "Calculate cumulated outgoing calls" and the "Calculate
backtraces" analyses are a bridge between the viewpoints of the call tree and the call graph.
They put the selected method in the center and show the outgoing and incoming calls as trees.
With the Show Call Graph action, you can switch to the full graph at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from graph
to a tree view. When you are working in the call graph, you can show the cumulated outgoing
calls and the backtraces as trees for any selected node in the graph with the same call tree
analyses as in the call graph.

Thread status: Thread selection: Aggregation level:
Telemetries
== Runnable 88 Al thread groups @ Methods

‘i:l' Live Memory
.
ﬁ Heap Walker

I CPU Views

Call Tree

= c.stj.comp.Enter B
e complete =
956 ms, 37 ps self, 1 inv.

+

= c.stjjvm.ClassReader§2
getEnclosingType
14,217 ps, BT ps self, 87 inv,

3

]

E‘f_lxﬂ u

Calculate Backtraces To Selected Method Ctrl+Alt+B

Hot Spots

Calculate Cumulated Outgoing Calls Ctrl+Alt+ G
Call Graph - SRR SRR R
Qutlier Detection /@ —
]E[= c.s.tjjym.ClassReader
Complexity Analysis + completeOwners
99,442 ps, 113 s self, 148 inv
Call Tracer 2
JavaScript XHR = c.stj.code SymboliClassSymbol B cstjc
e getinterfaces o

- e 18.505 us, 38 us self. 45 inv. 945

Threads

In the Intelli] IDEA integration [p. 140], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations

A little bit different from the previous call tree analyses is the "Show classes" analysis in the
allocation call tree and the allocation hot spots views. It does not transform the call tree to
another tree, but shows a table with all allocated classes. The result view is similar to the recorded
objects view [p. 70], but restricted for a particular allocation spot.

189

632 instances in 15 classes have been allocated at the .
” Telemetries selected call stack €D Reload analysis X 2 @

Recorded allocations: Live objects at 00:03, 1/10 allocations, All classes

|':'| Live Memary Aggregation level: @ Methods

All Objects Allocation spot: Jjava.awt.Graphics2D.fill — bezier.BezierAnimSDemo.drawDemo — + Show more

Recorded Objects Name Instance Count Size
java.util HashMapSNode I 171 (27 %) 5,472 bytes
4 Allocation Call Tree Jjava.awt.geom.AffineTransform | ErcES 4,104 bytes
S java.awt.geom.Point2DSDouble 57 (9% 1,324 bytes
java.awt.GradientPaintContext I 304 %) 1,920 bytes
Allocation Hot Spots Jjava.awt.RenderingHints 30 (4 %) 430 bytes
Jjava.awt.geom.Path2DSFloatSCopylterator 29 (4%) 928 bytes
Class Tracker Jjava.awt.geom.Point2DSFloat W 294%) 696 bytes
Jjava.lang.Integer M 204%) 464 bytes
2 Heap Walker java.lang.ref. WeakReference W 204 %) 928 bytes
ﬁ o java.util. HashMap W 02 1,392 bytes
sun java2d.loops.GraphicsPrimitiveMgrPrimitiveSpec Il 29 (4 %) 464 bytes
I CPU Views sun.javald.pipe AlphaPaintPipesTileContext W 2004 %) 1,392 bytes
int[] Ml 22 (4 %) 25,344 bytes
java.awt.qeom.Rectangle2DSFloat Wl 284 %) 896 bytes
= M=t Total from 15 rows: 632 (100 %) 51,648 bytes

v @

In the analysis result views that show call trees, both the "Calculate cumulated outgoing calls"
and the "Calculate backtraces to selected method" analyses are available. Invoking them creates
new top-level analyses with independent parameters. Any call tree removals from the previous
analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis when used
from a call tree analysis result view. Instead, it creates a nested analysis that is two levels below
the original view.

190

C Advanced CPU Analysis Views

C.1 Outlier Detection And Exceptional Method Recording

In some situations, it's not the average invocation time of a method that is a problem, but rather
that a method misbehaves every once in a while. In the call tree, all method invocations are
cumulated, so a frequently called method that takes 100 times as long as expected once every
10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the outlier detection view and the exceptional method
recording feature in the call tree.

Outlier detection view

The outlier detection view shows information about the call durations and invocation counts of
each method together with the maximum time that was measured for a single call. The deviation
of the maximum call time from the average time shows whether all calls durations are in a narrow
range or if there are significant outliers. The outlier coefficient that is calculated as

(maximumtime - average tinme) / average tine

can help you to quantify methods in this respect. By default, the table is sorted such that the
methods with the highest outlier coefficient are at the top. Data in the outlier detection view is
available if CPU data has been recorded.

: m
’ Telernetries Thread status: @ All states Change
Method Total Time Inv, Avg, Time Max. Time Qutlier Coeff, €
bezier.BezierAnimSDemo.block(boolean) 799 ms 423 1,890 us 200 ms 104,85
fh e viemary beier.BezierAnimSDemo.step(int, int) 1915 200ms 0349
bezier.BezierAnimSDeme.paint(java.awt.Gra... 1,268 ms 49 3,028 ps 203 ms 66.1
'E Heap Walker java.lang.Thread.sleep(long) 4,480 ms 419 10,693 ps 12,968 ps 0.213
I CPU Views
Call Tree
Hot Spots
Call Graph
Outlier Detection
Complexity Analysis
Call Tracer
JavaScript XHR
Threads v @

To avoid excessive clutter from methods that are only called a few times and from methods that
are extremely short running, lower thresholds for the maximum time and the invocation count
can be set in the view settings. By default, only methods with a maximum time of more than 10
ms and an invocation count greater than 10 are shown in the outlier statistics.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can add it

as an exceptional method in the context menu. The same context menu action is also available
in the call tree view.

191

Thread status: @) | £ All states Change

Method Total Time Inv. Avg. Time Max. Time Qutlier Coeff. €

bezier BezierinimiDemo.block{boolean) 799 ms 423 1,880 ps 200 ms 104,85/
bezier. Bezier&nim3SDemotioofzt St 202 ms 419 1,915 ps 200 ms 103.49
bezwer‘BaierAmrnSDerrl @ Add As Exceptional Method & ms 419 3,028 ps 203 ms 66.1
java.lang.Thread.sleep(l _ 0ms 419 10,693 ps 12,968 ps 0.213

= Show Source F4

i Show Bytecode

Sort Qutlier Statistics »

£ Find Cirl+F

T Export View Ctrl+R

View Settings Ctrl+T

When you register a method for exceptional method recording, a few of the slowest invocations
will be retained separately in the call tree. The other invocations will be merged into a single
method node as usual. The number of separately retained invocations can be configured in the
profiling settings. By default, it is set to 5.

When discriminating slow method invocations, a certain thread state has to be used for the time
measurement. This cannot be the thread status selection in the CPU views, because that is just
adisplay option and not a recording option. By default, the wall clock time is used, but a different
thread status can be configured in the profiling settings. The same thread state is used for the
outlier detection view.

@ Session Settings X

4 Enable CPU profili
Application Settings & Enable D

Auto-Tuning For Instrumentation

7
E;: Call Tree Recording EabEauiugtining 0

T Call Tree Filters

Trigger Settings

; Databases

n into the list of ignored

an overhead hot spot

methaods, if both of the following c

Call Tree Recording Optiens

@ HTTP, RPC & JEE CPU times for instrumentation: o Elapsed times ﬂ Estimated CPU times 0
Instrument native methods 9
o VM & Custom Probes Thread resolution for async sampling €
e . Exceptional Method Run Recording
@’ Advanced Settings
Maximum number of separately recorded method runs: 5% @
CPU Profiling -
Time type for determining exceptional method runs: EX All states
Probes & JEE

Call Tree Splitting
Memary Profiling

Maximurm number of splits: 128 |+ | @
Thread Profiling

Miscellaneous Async And Remote Request Tracking

A Frahle acune and remnte reanect trackinn €3

General Settings Copy Settings From “ Cancel

In the session settings, you can remove exceptional methods or add new ones without the context
of the call tree or the outlier detection view. Also, the exceptional method configuration provides
the option to add exceptional method definitions for well-known systems, like the AWT and
JavaFX event dispatch mechanisms where exceptionally long-running events are a major problem.

192

@ Session Settings X

This list contains metheds whose exceptional invocations are split in the call tree.

Application Settings ! Exceptional invocations are those where the total time spent in the method is much
more time than the median time for that method.
E= Call Tree Recording You can find methods with pronounced exceptional invocations in the outlier
detection view and add them from there.
Method Call Recerdi
od -allfecording Exceptional invocations are only recorded if the method call recording type is set to
Exceptional Metheds Instrumentation.
Split Methods Exceptional invocations are not recorded for virtual threads.
0 bezier.BezierAnimSDemo.step(int, int) +
' Call Tree Filters

Search in Configured Class Path

. : Search in Other JAR or Class Files
Trigger Settings
Search in Profiled Classes

Enter Manually (Advanced)
; Databases

Common Exceptional Methods # I
@ HTTP, RPC & JEE

General Settings Copy Settings From “ Cancel

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

. Thread status: 0 Thread selection: Aggregation level:
Telemetries EX All states ¥ 88 Al thread groups A @ Methods ~
() mm 50,0% - 7,671 ms - 1 inv. bezier.BezierAnim$Dema.run
":" Live Memary 0_ 50.0% - 7,671 ms - 1 inv. java.awt.EventDispatchThread .run
@ " 11.7%- 1,798 ms - 602 inv. bezier.BezierAnimSDemo.paint
(@12.3%- 358 ms - 602 inv. bezier.BezierAnim3Demo.drawDemo
b Heap Walker c‘ 1.3% - 203 ms - 597 inv, bezier.BezierAnimSDemao.step [merged exceptional runs]

¥ m, 1.3% - 200 ms - 1 inv. bezier.BezierAnim$Demo.step [exceptional run]
@ 1.3%- 200 ms - 1inv. bezier.BezierAnim$Dema.block
I CPU Views @ 0.0% - 1 ps - 12 inv. bezier.BezierAnimSDemo.animate
@) 1.3%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
Call Tree @) 1.3%- 200 ms - 1inv. bezier.BezierAnimSDemo.step [exceptional run]
G-_‘ 1.3% - 200 mns - 1inv, bezier.BezierAnimSDemo.step [exceptional run]
Hot Spots) 1.3%- 200 ms - 1inv. baiar.Bez\erAnimSDemo.stEp [exceptional run]
D 1.2% - 186 ms - 601 inv. java.awt.Graphics.drawlmage
@ 0.3% - 42,048 ps - 602 inv, bezier.BezierAnimS$Demo.createGraphics2D
U 0.0% - 336 ps - 601 inv. java.awt.Graphics2D.dispose
Qutlier Detection @ 0.0% - 4,513 ps - 602 inv. berier.BezierAnimSDemoS1.run

Call Graph

Complexity Analysis
Call Tracer

JavaScript XHR

Threads a v @

The split method nodes have modified icons and show additional text:

* @ [exceptional run]
Such a node contains an exceptionally slow method run. By definition, it will have an invocation
count of one. If many other method runs are slower later on, this node may disappear and
be added to the "merged exceptional runs" node depending on the configured maximum
number of separately recorded method runs.

* @ [merged exceptional runs]
Method invocations that do not qualify as exceptionally slow are merged into this node. For
any call stack, there can only be one such node per exceptional method.

@ [current exceptional run]

193

If an invocation was in progress while the call tree view was transmitted to the JProfiler GUI,
it was not yet known whether the invocation was exceptionally slow or not. The "current
exceptional run" shows the separately maintained tree for the current invocation. After the
invocation completes, it will either be maintained as a separate "exceptional run" node or be
merged into the "merged exceptional runs" node.

Like for call tree splitting by probes [p. 104] and split methods [p. 182], an exceptional method

node has a Merge Splitting Level action in the context menu that lets you merge and unmerge all
invocations on the fly.

Thread status: 0 Thread selection: Agagregation level:
O All states = . All thread groups hd @ Methods

() mmm 50,0% - 9,822 ms - 1 inv. bezier.BezierAnim$Demo.run
0 50,05 - 9,822 ms - 1 inv. java.awt.EventDispatchThread.run
@l 11.5% - 2,256 ms - 776 inv. bezier.BezierAnimSDemo.paint

ep [merged exceptional runs]

=3 Show Call Graph Lblock
T Show Threads mo.animate
[awDemo
G Add Method Trigger c
G ip [current exceptienal run]

[@ Add As Excepticnal Method

createGraphics2D
=< Split Method with a Script

L (-] Intercept Method With Script Probe I
I 3 Unmerge splitting level Ctrl+Alt+M
5= Remove Selected Sub-Tree Delete
Restore Removed Sub-Trees Ctrl+Alt+5
W Add Filter From Selection 3

194

C.2 Complexity Analysis

The complexity analysis view allows you to investigate the algorithmic complexity of selected
methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity " and a
comparative guide to complexities for common algorithms “ are recommended readings.

First, you have to select one or more methods that should be monitored.

@ Configure Complexity Recordings X

Configured methods:

Q@ sort.Comparison.executeBubbleSort(int]], int) #
Script returning the complexity as an integer: | i x

@ sort.Comparison.executeSelectionSort{int] , int)
@ sort.Comparison.executelnsertionSort(int[], int)

[m] sort.Comparison.executeQuickSort(int[], int)

@ Help

b4

Cancel

For each method, you can then enter a script whose return value of type | ong is used as the
complexity for the current method call. For example, if one of the method parameters of type
java.util . Col | ectionisnamedi nputs, the script could bei nputs. si ze().

@ settings Edit Search

Code Help

Edit

.

ot '8
&

o

P R

Find

% E

cut

o
Show
Histary

Modify Test

Hel)
Classpath Compile =p

Copy Paste Replace

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

B

- com jprofiler.api.agent.ScriptContext scriptContext

- javalang.Class<?> ¢
- sort.Comparison currentObject

- int[] intArray
-int i

The expected return type is long

Script:

1 intArray.length

Cancel

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 26]. After recording has been stopped, a graph with the results is displayed plotting
the complexities on the x-axis against the execution times on the y-axis. To reduce memory
requirements, JProfiler can combine different complexities and execution times into common
buckets. The drop-down at the top allows you to switch between the different configured methods.

M https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
) https://bigocheatsheet.com/

195

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the number of
measurements in it. If all measurements are distinct, you will see a regular scatter chart. In the
other extreme, if all method invocations have the same complexity and execution time, you will
see a single large circle.

” Telernetries Complexity recording: | (@ sort.Comparisen.executeBubbleSort(int]], int) v

Curve fits: Quadratic (R°=0.227) [best fit] -

’!:!' Live Memaory
]
'ﬁ Heap Walker

I CPU Views
151

Call Tree £
£
Hot Spots g
e E 101
Call Graph
Outlier Detection
54
Complexity Analysis o
-
Call Tracer - -
JavaScript XHR [T T T T T
0 1,000 2,000 3,000 4,000 5,000
Threads Complexity

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler tries
curve fits from several common complexities and initially shows you the best fit. The drop-down
for the curve fits allows you to show other curve fit models as well. The R? value embedded in
the description of the curve fit shows you how good the fit is. The models in the drop-down are
sorted in descending order with respect to R’, so the best model is always the first item.

Complexity recording: [m] sort.Comparisen.executeBubbleSort(int]], int) -
Curve fits: Cuadratic (F'=0.997) [best fit]

Quadratic (R*=0.997) [best fit]
Exponential (87

20 Cubic (R

n*log(n) (F'=

Linear (R°=0.917

Legarithmic (R°=0.56)

Constant (R°=0)

me in ms

Note that R* can be negative, because it is just a notation and not really the square of anything.
Negative values indicate a fit that is worse than a fit with a constant line. The constant line fit
always has an R® value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties" option
in the export dialog. For automated analysis in a quality assurance environment, the command
line export [p. 249] supports the properties format as well.

196

C.3 Call Tracer

Method call recording in the call tree cumulates calls with the same call stacks. Keeping precise
chronological information is usually not feasible because the memory requirements are huge
and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire chronological
sequence. For example, you may want to analyze the precise interlacing of method calls of several
cooperating threads. A debugger cannot step through such a use case. Alternatively, you would
like to analyze a series of method invocations, but be able to go back and forth and not just see
them once like in the debugger. JProfiler provides this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer view, with
a trigger [p. 26] or with the profiling API [p. 128]. To avoid problems with excessive memory
consumption, a cap is set on the maximum number of collected call traces. That cap is configurable
in the view settings. The rate of collected traces heavily depends on your filter settings.

Call tracing only works when the method call recording type is set to instrumentation. Sampling
does not keep track of single method calls, so it is technically not possible to collect call traces
with sampling. Calls into compact-filtered classes are recorded in the call tracer, just like in the
call tree. If you just want to focus on your own classes, you can exclude these calls in the view
settings.

@ Call Tracer View Settings X

Trace Recerding

Maximum number of recorded call traces: hDD,DDD s

Record calls into unprofiled classes &)

Time Display
© Relative to first trace
Relative to previous node
Relative to previous node of the same type
Method Display

[:] Show signature

Show class names in method nodes

The traced method calls are displayed in a tree with three levels that make it easier to skip related

calls by collapsing them. The three groups are = threads, © packages and @ classes. Each time
the current value for any of these groups changes, a new grouping node is created.

At the lowest level there are @ method entry and @ method exit nodes. Below the table with
the call traces, the stack trace of the currently selected method trace is shown. If call traces into
other methods have been recorded from the current method or if another thread interrupts the
current method, the entry and exit nodes for the that method will not be adjacent. You can
navigate on the method level only by using the Previous Method and Next Method actions.

197

A Lg“- + p Y + =]
@ H 2 8 8 % C & 2 @ W =
Start = Save Session Start Stop Start anae | hod Boor W - Record Hide
Center P Gnapshot Setings Recordings Recordings Tracking un Bookmark PO cettings =7 Traces Selected Hidce
14,517 traces, 0 hidden element
' Telemetries =
L AWT-EventCOueue-0 (33 traces) +0ps
Java.awt (1trace) +0ps
":, Live Memory @ Jjava.awt.EventDispatchThread (1trace) +0ps
’ @ run() +0ps
bezier (32 traces) +0ps
ﬁ Heap Walker © bezier.BezierinimsDemo (32 traces) +0ps
(R paint(java.awt.Graphics) +0ps
G step(int, int) +123 ps
I CPU Views (2 animate(float[] float[], = = + 127 ps
(@ animate(float]], float[], W Hide Selected Delete +23Tps
@ animate(float]], float[], ow Hidden Ctrl+Alt+S + 241 ps
Call Tree .
Q animate(float[], float[|, + 244 ps
Hot Spots @ animate(float[], float[|, Show Source F4 + 245 ps
G animate(float|], float[|, Show Bytecode + 246 ps
Call Graph @ animate(float|], float]], + 248 ps
I . D t—— Skip To Previous Method Trace Alt+Up —
utlier Detection : n ; (P
bezier.BezierAnimSDemo.step(int, int) @ Skip To Next Method Trace Alt+Down
. bezier.BezierAnimSDemo.paint(java.a
Complexity Analysis
Jjava.awt.EventDispatchThread.run() /O Find Ctrl+F
Call Tracer
LS Export View Ctrl+R
JavaScript XHR _—
View Settings Ctrl+T
Threads
@ 1 active recording VM #1 00:13 @ Profiling

The timing that is displayed on the traces and all grouping nodes refers to the first trace by
default, but can be changed to show relative times since the previous node. If the previous node
is the parent node, that difference will be zero. Also available is the option to show relative times
with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short time. To
eliminate traces that are of no interest, the call tracer allows you to quickly trim the displayed
data. For example, certain threads might not be relevant or traces in certain packages or classes
might not be interesting. Also, recursive method invocations can occupy a lot of space and you
might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the del et e key. All other instances of the
selected nodes and all associated child nodes will be hidden as well. At the top of the view, you
can see how many call traces out of all the recorded traces are still shown. To show hidden nodes
again, you can click on the Show Hidden tool bar button.

b +

-
|

- 5 @ o0
%
5 B R 2 e | B B
Start Stoy Start Add View Record Hide Show Previous Mext
e Run GC Sxport Help
ecordings Recordings Tracking Bockmark Settings Traces Selected Hidden Method Method

6,597 of 14,517, 1 hidden element

I AWT-EventQueue-0
java.awt

(9 traces)
(1trace)

+0ps
+0us

198

C.4 JavaScript XHR Origin Tracking

With JavaScript XHR origin tracking, you can split servlet invocations for different stack traces in
the browser during XMLHttpRequest " or Fetch “ requests, so you can better correlate the
activity in the profiled JVM with actions in the browser. in the following, "XHR" designates both
the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome ' as the browser and install the JProfiler

. . 4
origin tracker extenS|on().

G Google *

< C [hitps//www.google.com H

The Chrome extension adds a button with a & JProfiler icon to the tool bar that starts tracking.
When you start tracking, the extension will intercept all XHR calls and report them to a locally
running JProfiler instance. As long as tracking has not been started, JProfiler will show an
information page that tells you how to set up JavaScript XHR origin tracking.

” Telemetries = JavaScript XHR Origin Tracking
":" Live Memaory IProfiler can track the JavaScript stack traces of XHR calls from a Chrome browser into the profiled JVM,
When XHR tracking is active, you get
]
ﬁ Heap Walker = Atree of JavaScript calls that initiate XHR calls into the profiled JWM
= JavaScript call tree splitting below the URL splitting level
I CRUMiex = Full JavaScript stack traces in the call tree
Call Tree To activate this feature, you have te install the JProfiler Chroeme extension and teggle the L IProfiler
tracking button in Chrome,
Hot Spots
Call Graph After you complete these actions, this notice will disappear and the JavaScript XHR call tree will be shown,

Outlier Detection
Complexity Analysis
Call Tracer

JavaScript XHR

Threads

When tracking is activated, the JProfiler extension will ask you to reload the page. This is necessary
for adding instrumentation. If you choose to not reload the page, event detection may not work.

The tracking status is persistent on a per-domain basis. If you restart the browser while tracking
is active and visit the same URL, tracking will automatically be enabled, without the need to
reload the page.

https://xhr.spec.whatwg.org/

)

) https://fetch.spec.whatwg.org/

) http://www.google.com/chrome/
)

https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

199

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

JavaScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in JProfiler, the
JavaScript XHR view will show a cumulated call tree of these calls. If the view remains empty, you
can switch the "Scope" at the top of the view to "All XHR calls" to check if any XHR calls have been
made.

Scope: | XHR calls that were recorded in this JVM b

= (DmpleteOutstaﬂdlngRequest http: fapp-6
=] http {localhost:2082/js/app- B‘FBEDEBEJS 54529 36

@ ScopeSapply (hitp://localho

5 S(ope.Sdigest-hm: fflocalhost:

& Scopaie\ral http://1o

& http Nocalhost:B082/

g processQueue (http

& seNerREquest http:/

g sendReq (http:

ffloc Ihct
=2 ScUpESapp\y http
& Scope Sdigest (http://loc
&= S(DpeSevaI http://localho
= http flocalhost:B082/js/app- 622023

@ processQueue (http://localhos
a seNerRequest http://1o

g sendReq (hitp://localho 9

http://localhost:3082/)s/app-6f880a36.)5:48063:11 jurnp tc execution site

§. mouseup on <a> [ng-mouseup: ‘entryClicked(entry, Sevent)’]
L click on <butten> [ng-click: 'settingsService settings.readingMo
i AMLHttpRequest.requestLoaded (http://localhost2082/)s/app-6f22

Javascript & call stack nodes include information on the source file and the line number. The

function where the XHR call is made has a @ special icon and adjacent hyperlink in case the XHR
call was handled by the profiled JVM. The hyperlink will take you to the Javascript splitting node
in the call tree view [p. 52] where you can see the server side call tree that was responsible for
handling requests of this type.

At the top of the tree you find ‘# browser event nodes that show event name and element name
together with important attributes that help you pin down the source of the event. Not all requests
have an associated event.

The extension is aware of several popular JavaScript frameworks and walks the ancestor hierarchy
between the target node of an event up to the node where the event listener is located, looking
for attributes that are suitable for display and splitting the call tree. Failing to find
framework-specific attributes, it stops at an i d attribute. In the absence of an ID, it searches for
"control elements" like a, but t on or i nput . All failing, the element where the event listener is
registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and you
may prefer a different call tree splitting. For example, some frameworks assign automatic IDs,
but it would be more readable to group all elements together with a semantic description of the
action. To achieve a different call tree splitting, add the HTML attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event listener.
The text in that attribute will be used for splitting and other attributes will be ignored.

200

Call tree splitting

In the call tree view, XHR calls will split the call tree for each separate combination of browser

event and call stack. The & splitting nodes show information about the browser event. If no
eventisin progress, likein a call to set Ti meout (), the last few stack frames are displayed inline.

Thread status: 0 Thread selection: Aggregation level:
B Runnable - 88 All thread groups v @ Methods

) o 50.6% - 938 ms - Sinv. org.eclipse.jetty.util thread. QueuedThreadPool33.run
@ = 45,0% - 712 ms - 3 inv. HTTP: frest/category/get
@™ 12.7% - 200 ms - 3 inv. HTTP: /rest/category/entries

5.5% - 87,291 ps - 1inv. click on <button> [ng-click: 'settingsService.settings.readingMode = 'all"'] show more
(315,5% - 87,284 ps - 1inv. com.commafeed. CommaFeedApplication$4.doFilter
ml 5.5% - 87,277 ps - 1 inv. io.dropwizard.servlets.CacheBustingFilter. doFilter
W 00%-2ps-1 inv. javax.servlet.http. HitpServletRequest. getRequestURI
W 00%-1us-1 inv. java.lang.5tring.contains
14.7% - 74,036 ps - 1inv. http://localhost:8082/js/app-6f880a36.j:48063:11 — sendReq — serverRequest — processQuene — hitp://lol
12.5% - 39,281 ps - 1inv. http://localhost:B082/js/app-6f880a36.,j5:48063:11 — sendReq — serverRequest — processQueue — http://log
8% - 12,143 ps - 1 inv. HTTP: /rest/entry/mark
0.8% - 12,129 ps - 1 inv. mouseup on <a» [ng-mouseup: 'entryClicked(entry, Sevent)'] show more
() 0.8%- 12122 ps - 1 inv. com.commafeed.CornmaFeedApplication$4.doFilter
0.8% - 12,112 ps - 1inv. io.dropwizard.servlets.CacheBustingFilter.doFilter
W 00%-2ps-1 inv. javax.servlet.http. HttpServletRequest. getRequestURI
W 00%-1us-1 inv. java.lang.5tring.contains
a 0.6% - 9,935 ps - 1inv, HTTP: /rest/user/settings
O w4045 - 636 ms - 5 inv. java.util.concurrent. ThreadP colExecutorfWorker.run

M=)

v @

The "show more" hyperlink on these nodes opens the same detail dialog that is opened by the
View->Show Node Details action. For JavaScript splitting nodes, the detail dialog does not show
the text of the node, but the entire browser call stack. To inspect the call stack of other JavaScript
splitting nodes, leave the non-modal detail dialog open and click on those nodes. The detail
dialog will update its contents automatically.

Details for Selected Element

http://localhost:8082/7s/app-6£880a36.33:48063:11
sendReq (http:
serverRequest

processQueue |
http://localhost
Scope.feval (htt
Scope.fdigest
Scope.fapply (h
HIMLButtonElement.
HIMLButtonElement.
elemData.handle (http
HTMLButtonElement.<anonymous>
click on <button> [ng-click: 'settingsService.settings.readingMode = "all'']

This Invocation Sub-Tree &) All Invocations &)

Total 87,291 ps &7.291 ps 47213 ps
Self Tus Tus 18 us
Calls 1 1 2

201

D Heap Walker Features In Detail

D.1 HPROF And PHD Heap Snapshots

The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF format,
The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain garbage
collector roots, so JProfiler simulates classes as roots. Finding class loader memory leaks may
be difficult with a PHD file.

Native heap snapshots can be saved without the profiling agent and incur a lower overhead than
JProfiler heap snapshots, because they are saved without the constraints of a general purpose
API. On the flip side, the native heap snapshots support less functionality than JProfiler heap
snapshots. For example, allocation recording information is not available, so you cannot see
where objects have been allocated. HPROF and PHD snapshots can be opened in JProfiler
withSession->0pen Snapshot, just like you would open a JProfiler snapshot. Only the heap walker
will be available, all other sections will be grayed out.

In a live session, you can create and open an HPROF/PHD heap snapshot by invoking Profiling->Save
HPROF/PHD Heap Snapshot. For offline profiling [p. 128], there is a "Create an HPROF heap dump"
trigger action. It is usually used with the "Out of memory exception" trigger to save an HPROF
snapshot when an Qut Of Menor yEr r or is thrown.

@ Trigger Wizard - Out of memory exception X
1. Trigger type Configure actions for this trigger
2. Actions
3. Description Configured actions:
4.6 o}
roup lT' II Create an HPROF/PHD heap dump +

5. Finished

4 Back Next P Finish Cancel

This corresponds to the VM parameter "’
- XX: +HeapDunmpOnQut OF Menor yEr r or

that is supported by HotSpot JVMs.

An alternative way to extract an HPROF heap dump from a running system is via the command
line tool j map that is part of the JRE. Its invocation syntax

jmap -dunp:live, format=b,file=<fil ename> <Pl D>

M http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

202

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remember and requires you to use the j ps executable to find out the PID first.
JProfiler ships with an interactive command line executable bi n/j pdunp that is much more
convenient. It lets you select a process, can connect to processes running as a service on Windows,
has no problems with mixed 32-bit/64-bit]VMs and auto-numbers HPROF snapshot files. Execute
it with the - hel p option to get more information.

Taking HPROF heap snapshots without loading the profiling agent is also supported in the JProfiler
GUI. When attaching to a process, locally or remotely, you always have the possibility to just take

an HPROF heap snapshot.

© JProfiler Start Center

Start Center

© On this computer On another computer On a Kubernetes cluster
Open Container. Mone, showing top level processes Select Container
Session

Status: All detected HotSpot/Open9 WMs ~ Show Services

“ PID

Process Mame

Quick baler‘E‘-ezwerAnlm block

Attach 17804
18223
o= 21712
22236
Mew 25664
Session 26084
27736
28883

Open

Snapshots
Legend:

ChUsershingo\AppData\Local\JetBrains\ Toolbox\apps\IDEA-UNch-0\232.8660.185\jbr
org.jetbrains jps.cmdline.Launcher C:/Users/inge/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
org.jetbrains.kotlin.daemon.KotlinCompileDaemen --daemon-runFilesPath C\Users\inge\AppD...
org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
org.jetbrains.idea.maven.server.RemoteMavenServer36
org.jetbrains.kotlin.daemon.KotlinCompileDaeman --daeman-runFilesPath C:\Users\ingo\AppD...
C\Users\ingo\AppData\Local\JetBrains\ Toolbox\bin'jre
org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3

Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only | @ Start JFR. (7] Close

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an Qut Of Menor yEr r or, the thread dump may be able to convey what part of
the application was active at the time of the error. The thread that triggered the error is marked

with a special icon.

’ Telemetries
‘I:I- Live Memary

b Heap Walker

Current Object Set

Thread Dump

I CPU Views

Threads
Menitors & Locks

Databases

P > M

HTTP. RPC & JEE

88 All thread groups
main
Maonitor Ctrl-Break

system

Finalizer
Reference Handler
Signal Dispatcher

java.lang.OutOfMemoryError.<init> () (line: 48)
javautil. ArrayList, <init> (int) (line: 132)
misc. 00MTest.main(java.lang.5tring[] (line: 41)

203

D.2 Minimizing Overhead In The Heap Walker

For small heaps, taking a heap snapshot takes a couple of seconds, but for very large heaps, this
can be a lengthy process. Insufficient free physical memory can make the calculations a lot
slower. For example, if the JVM has a 50 GB heap and you are analyzing the heap dump on your
local machine with only 5 GB of free physical memory, JProfiler cannot hold certain indices in
memory and the processing time increases disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended to
increase the - Xnx value in the bi n/ j profil er. vnopti ons file unless you have experienced
an Qut Of Menor yEr r or and JProfiler has instructed you to make such a modification. Native
memory will be used automatically if it is available. After the analysis has completed and the
internal database has been built, the native memory will be released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump. When
you save a snapshot, the analysis is saved to a directory with the suffix . anal ysi s next to the
snapshot file. When you open the snapshot file, the heap walker will be available very quickly.
If you delete the . anal ysi s directory, the calculation will be performed again when the snapshot
is opened, so if you send the snapshot to somebody else, you don't have to send the analysis
directory along with it.

If you want to save memory on disk or if the generated . anal ysi s directories are inconvenient,
you can disable their creation in the general settings.

@ General Settings X

Ul Session Defaults Snapshots IDE Integrations Updates External Programs

Heap Dump Analysis
The heap walker needs to analyze the heap dump before it can be shown. Depending on the heap size, this
analysis can take a long time. JProfiler can save the results of the analysis, so that snapshots can be
opened much faster.
Store heap dump analysis

If the analysis is missing, JProfiler will simply perform it again when you open the snapshot.

You can also use the jpanalyze command line tool to pre-analyze snapshots were taken automatically in
offline mode.

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 128] do not
have an . anal ysi s directory next to them, because the analysis is performed by the JProfiler
Ul and not by the profiling agent. If you do not want to wait for the calculation when opening
such snapshots, the j panal yze command line executable can be used to pre-analyze [p. 249]
snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot without
an analysis, and its directory is not writable, a temporary location is used for the analysis. The
calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too long
and you don't need the retained sizes, you can disable their calculation in the overhead options
of the heap walker options dialog. In addition to retained sizes, the "Biggest objects" view will
not be available either in that case. Not recording primitive data makes the heap snapshot

204

smaller, but you will not be able to see them in the reference views. The same options are
presented when opening snapshots if you choose Customize analysis in the file chooser dialog.

@ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section.

Perform full GC in heap snapshot)

Retain objects held by soft references -

Calculate retained sizes | &)
Record primitive data 0

205

D.3 Filters And Live Interactions

When looking for objects of interest in the heap walker, you often arrive at an object set that has
too many instances of the same class in it. To further trim the object set according to your
particular focus, the selection criteria could then involve their properties or references. For
example, you may be interested in HTTP session objects that contain a particular attribute. In
the merged outgoing reference view of the heap walker you can perform selection steps that
involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive fields.

@ Classes Ml Allocations EE Biggest Objects K References o Time @ Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. ¥ | Apply filter ... | =2 Show In Graph 7:0:} || @

Object By restricting the selected value hallow Size Allocation Time (him:s)
o java.util. HashMapSNode (0x7a50) With a code snippet 32 bytes n/a
hash = 876200628
key & class javax.swing RepaintManager (0x15f
HANDLE_TOP_LEVEL_PAINT = true
BUFFER STRATEGY NOT SPECIFIED = 0

When you select a top-level object, a primitive value or a reference in the outgoing references
view, the Apply Filter->By Restricting The Selected Value action becomes enabled. Depending on
the selection, the filter value dialog offers different options. Whatever options you configure,
you always implicitly add the constraint that objects in the new object set must have outgoing
reference chains like the selected one. Filters always work on the top-level objects by restricting
the current set of objects into a possibly smaller set.

O Classes Wl Allocations uﬂ Biggest Objects 3 References O Time {C‘;} Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references hd Use.. > Apply filter ... ¥ Show In Graph L] I
Object Retained Size Shallow Size Allocation Time (h:m:s)
¥ java.util HashMapSMode (0x7a30 1,483 kB 32 bytes nfa
hash = 876200628
key & class javax.swing RepaintManager (01 & Filter Value w0

HANDLE_TOP_LEVEL_PAINT = true

BUFFER_STRATEGY_NOT_SPECIFIED = | Y Select all objects from the current object set for which the following is true:
BUFFER_STRATEGY_SPECIFIED_ON = 1

BUFFER_STRATEGY_SPECIFIED_OFF = 2 # The object has an outgoing reference chain just like the selected one
BU_FFES‘STRA]EEY‘TYP_E_: 2 & The selected primitive value satisfies the following condition:

Selection step &: Class

java.util HashMapSNode Integer value | equals hd 12343 d

4,474 instances of java.util.HashMapShode

Selection step 1: All ohjects, after full GC, retaining surerererences

7407 mleia it 4 A alemen

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For reference
types, you can ask JProfiler to filter non-null values, null values, and values of a selected class.
Filtering by the result of the t oSt ri ng() method is only available in live sessions, except for
java.lang. Stringandjava. | ang. Cl ass objects where JProfiler can figure this out by itself.

206

K References o Time 3:0:} Inspections +
x

@ Classes Ml Allocations .. Biggest Objects

. . . @ Filter Val
Current object set: 4,474 instances of) flrer velue
2 selection steps, 143 kB s| v Select all objects from the current object set for which the following is true:

Outgoing references v Use.w @ The object has an outgoing reference chain just like the selected one

Object 0 The selected reference satisfies the following condition:

[] Jjava.util HashMapSMede (0x 7350
hash = 876200628 : The reference is not null
key =/ class javax.swing.RepaintManager (i
HANDLE_TOP_LEVEL_PAINT = true
BUFFER_STRATEGY_NOT_SPECIFIED = | () The instance is of the type:
BUFFER_STRATEGY_SPECIFIED_ON = 1
BUFFER_STRATEGY_SPECIFIED_OFF = 2
BUFFER_STRATEGY TYPE= 2 Also match derived classes
The result of the toString() method satisfies the condition:

Selection step 2: Class
java.util.HashMapSNede contemns gnore case

4 474 instances of java.util.HashMapSNode

Selection step 1: All objects, after full GC, retainingswrerererences

The reference is null

java.lang.String

7 40T mleia it 4 A almmmem

The most powerful filter type is the code filter snippet. In the script editor, you have access to
the object or reference and can write an expression or script whose boolean return value decides

whether an instance should be retained in the current object set or not.

@ Settings Edit Search Code Help Edit X
s = g o e 3
¥ BEE PR % O
X . Show . Modify Test
Copy Cut Paste e Find Replzce S A Sl Help
Y Select all objects from the current object set for which the following is true:
a The object has an cutgeing reference chain just like the selected one
o The selected reference passes the following filter script:
;_:' Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
‘7'm regular Java code. The following parameters are available:
J
- com jprofiler.api.agent.ScriptContext scriptContext
- sun.awt.image.PixelConverter pixelConverter
The expected return type is boolean
Filter script:
1 bixelCDnverter. gethlphaMask() & 255 == 255 .

Of course this feature can only work for live sessions, because JProfiler needs access to the live
objects. Another consideration is that an object may have been garbage collected since the heap
snapshot was taken. In that case, such an object would not be included in the new object set
when a code snippet filter is executed.

Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes thet oSt ri ng() method on all
objects that are currently visible in the view and shows them directly in the reference nodes. The
nodes can become very long and the text may be cut off. Using the Show Node Details action

from the context menu helps you to see the entire text.

207

@ Classes Ml Allocations .. Biggest Objects K References O Time @ Inspections

Current object set: 7 instances of sun_font.FontFamily

2 selection steps, 336 bytes shallow size, Calculate retained and deep sizes Use retained objects

Outgoing references v Use.. ¥ Apply filter ... ¥ #3 Show In Graph
Object Retzined Size Shallow Size Allecation Time (him:s)
[sunfont.FontFamily ((x8d05) ["Font family: M... 224 bytes 48 bytes n/a
initialized = false
logicalFont = true
familyRank = 2
familyWidth = 0 Details for Selected Element ®

familyName ‘:)java.lang‘Strmg (0ne ["Monospaced”]
fontSequence 'ojava.ut\I.Arraystt (3 ["[sun.font.FentFz
M <un font FantFamily (02006 ["Font famile Ser...

sun.font.FontFamily (0x8d03) ["Font family: Monospaced
plain=null bold=null italic=null belditalic=null initialized=false"]

Selection step 2: Class
sun.font.FontFamily

7 instances of sun.font.FontFamily

Selection step 1: All objects, after full GC, retaining soft references

7 40T mleia it 4 A almmmem

A more general method of obtaining information from an object than calling the t oSt ri ng()
method is to run an arbitrary script that returns a string. The Run Script action next to the Show
toString() Values action allows you to do that when a top-level object or a reference is selected.
The result of the script execution is displayed in a separate dialog.

@ Settings Edit Search Code Help Edit X
N [? = . \.
= [&% 7
I Shew Modify Test
Undo Copy cut Paste Find Replace | o i Compie Help
@ Run a script with the selected instance as a parameter.
The returned string will be displayed in a dialog.
Please enter an expression (ne trailing semicolon) or a script (ends with a return statement) that censists of
regular Java code. The following parameters are available:
- com jprofiler.api.agent.ScriptContext scriptContext
- java.lang.Class<?> ¢
The expected return type is java.lang.String
Script:
. ; p]
1imp java.util.stream.Collectors;
2 Arrays.stream{c.getDeclaredMethods())
3 .map{m -> m.toeString())
4 .collect (Collectors.joining(™\n"))

208

D.4 Finding Memory Leaks

Distinguishing regular memory usage from a memory leak is often not quite simple. However,
both excessive memory usage and memory leaks have the same symptoms and so they can be
analyzed in the same way. The analysis proceeds in two steps: Locating suspicious objects and
finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory over
time. Detecting the growth of memory usage is best done with the VM telemetries and the
differencing functionality [p. 70] in the "All objects" and the "Recorded objects" views. With these
views, you can determine if you have a problem and how severe it is. Sometimes, the difference
column in the instance tables already gives you an idea what the problem is.

) -
/- Telemetries Memory pool: | Heap
&

Overview

300 MB

Memary

Recorded Objects
Recorded Throughput
GC Activity 200 ME
Classes 7
Threads

CPU Load

Custom Telemetries 100 ME -

-l:l' Live Memary

b Heap Walker
|

BN Freesize: 115.2MB = Used size: 107.5MB 8 Committed size: 2227MB » p p)_3

Any deeper analysis of a memory leak requires the functionality in the heap walker. To investigate
a memory leak around a particular use case in detail, the "Mark heap" functionality [p. 80] is
best suited. It allows you to identify new objects that have remained on the heap since a particular
previous point in time. For these objects, you have to check whether they are still legitimately
on the heap or if a faulty reference keeps them alive even though the object serves no further
purpose.

P @ H 2 82 8 % C & O m|#

s Sve Session Take | Mk
Center P Snapshot Settings Snapshot| Heap

ul Start the recordings in the selected recording profile L—_ ie.—i-;: Help

/' Telemetries o No snapshot has been taken.
For a maximum of features:

-I:II Live Memory

Press ﬂ to take a JProfiler heap snapshot

Another way to isolate a set of objects that you are interested in is through allocation recording.
When taking a heap snapshot, you have the option to show all recorded objects. However, you
may not want to limit allocation recording to just a particular use case. Also, allocation recording
has a high overhead, so the Mark Heap action will have a comparatively much smaller impact.
Finally, the heap walker lets you select old and new objects at any selection step with the Use
new and Use old hyperlinks in the header if you have marked the heap.

209

© Classes il Allocations .. Biggest Objects K References o Time @ Inspections +

Current object set: 96,409 objects in 1,327 classes.

1 selection step, 7,365 kB shallow size

34,841 new instances (36.1%) since the last heap dump Use old

© Classes A Use.. v & Group By Class Loaders Calculate estimated retained sizes
Mame Instance Count Size
byte[] I (0,62 (21 %) 937 kB
java.lang.String I 1396 (15 %) 357 kB
ava.util. HashMa ode), %)
i il.HashMapSHod I 0,132 (10 %) 374 kB
javalang.Llong N 5756 (5 %) 138 kB

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in the
profiled application. In that case, you don't have to examine new objects, but simply analyze
what objects are most important.

Memory leaks can have a very slow rate and may not become dominant for a long time. Profiling
such a memory leak until it becomes visible may not be practicable. With the built-in facility in
the JVM to automatically save an HPROF snapshot [p. 202] when an Qut O Menor yEr r or is thrown,
you can get a snapshot where the memory leak is more important than the regular memory
consumption. In fact, it's a good idea to always add

- XX: +HeapDunpOnQut O Menor yEr r or

to the VM parameters or production systems, so you have a way to analyze memory leaks that
may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects" view of the heap walker
will contain the memory that was retained by mistake. While the biggest objects themselves may
be legitimate objects, opening their dominator trees will lead to the leaked objects. In simple
situations, there is a single object that will contain most of the heap. For example, if a map is
used to cache objects and that cache is never cleared, then the map will show up in the dominator
tree of the biggest object.

@ Classes Wl Allocations .- Biggest Objects i References o Time 7:9:} Inspections 3

Current object set: 63,815 objects in 1,286 classes.

1 selection step, 5,476 kB shallow size

Mo grouping v | = Tree h Use.. v =3 Show In Graph @ = @
Object Retained Size
W sun.awt. AppContext (Dx6e53) I 1545 kB (28 %)

) bezier.Bezierhnim |) I :G kB (S %)
v 487 kB (99.9%) leakMap = java.util. HashMap
— 37 kB (99.9%) table @) java.util.HashMap$Nodel]
é{, Another 1,366 instances with a total retained size of 471 kB and a maximum single retained size of 912 bytes
.}é Anaother 6 instances with a total retained size of 376 bytes and @ maximum single retained size of 144 bytes
|:i bezier.BezierAnimSDemo (0x514) | GRS
|:i Jjava.utilzip.ZipFileS5ourc B1) 112 4B (2 %)
0 com.jprofiler.agent.d.a (0 W 55,088 bytes (1 %)
@ sun.security.util. KnownQIDs W 50,880 bytes (0 %)
W sun.security.provider.Sun (0x2950) W 49,176 bytes (0 %)
3 sun java2d.loops.GraphicsPrimitiveMgr (0:129) 1l 38,432 bytes (0 %)

1@ javalang.invoke.MethodType (0x10) 1 38,304 bytes (0 %)
I:i Jjava.util.concurrent.CencurrentHashMap (031860 I 34192 bytes (0 %)
Iﬂ sun.awt.ExtendedKeyCodes (0x 76 I 30336 bytes (0 %)
[T Sy~ TSRS JUPUURL. X UPUp R 7. o £ | EETT W I % -12Y

210

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced", means that
there is at least one chain of references from a garbage collector root to the object. "Garbage
collector" roots (in short GC roots) are special references in the JVM that the garbage collector
knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions in the
"Incoming references" view or in the heap walker graph. Such reference chains may be very long
in practice, so they can generally be interpreted more easily in the "Incoming references" view.
The references point from the bottom towards the object at the top level. Only the reference
chains that are the result of the search are expanded, other references on the same levels are
not visible until a node is closed and opened again or the Show All Incoming References action in
the context menu is invoked.

© Classes Wl Allocations EE Biggest Objects 1 References o Time @ Inspections 3

Current object set: 1,550 instances of java.awt.geom.GeneralPath
2 selection steps, 49 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references v Use.. ¥ =3 Show In Graph @ || @ i Show Paths To GC Reot
Object Retained Size Shallow Size Allocation Time (himss)
[java.awt.geom.GeneralPath (0x8a8f) 248 bytes 32 bytes 0:0:07.2
@ value of java.util HashMapSNode (0:x2a2d
D element of java.util. HashMapSMode[] (0xc5al

@ table of java.util HashMap (0xfasc
O leakMap of bezier.BezierAnim (0x5172
0 this$0 of bezier.BezierAnimSDeme (0x614
Oijava stack of Thread-0 in bezier.BezierAnimSDemo.run()

[] Jjava.awt.geom.GeneralPath (0 243 bytes 32 bytes 0:0:15.4
[] Jjava.awt.geom.GeneralPath 248 bytes 32 bytes na
) jova.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:11.3
) jeva.awt.geom.GeneralPath 248 bytes 32 bytes n/a
@ jeva.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:07.2
@ java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:15.4
@ java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:11.3
@ java.awt.geom.GeneralPath 248 bytes 32 bytes 0:0:07.2

To get an explanation for types of GC roots and other terms that are used in the reference nodes,
use the tree legend.

© Classes Wl Allocations EI] Biggest Objects 3 References O Time @ Inspections 3

Current object set: 1,550 instances of java.awt.geom.GeneralPath
2 selection steps, 49 kB shallow size, Calculate retained and deep sizes Use retained objects

Incoming references hd Use.. ™ Show In Graph L] Show Paths Te GC Root

Object Retained Size Shallow Size Allocation Time (himss)
@ java.awt.geom.GeneralPath (0x228f 248 bytes 32 bytes 0:0:07.2
@ value of java.util HashMapSNode (0x2ad
O element of java.util.HashMapSMode]]
@ table of java.util.HashMap (Dxfalc
Y leakMan of herier.RezierAnim (06167

When you select nodes in the tree, the non-modal tree legend highlights all used icons and terms
in the selected node. Clicking on a row in the dialog will show an explanation at the bottom.

211

Tree Legend x

Node lcons
[] Instance in current ohject set
<] Class object in current object set
O Incoming reference
Reference cycle
[=] Inceming reference in path to GC root
o Class reference
i GC root
3{, Cutoff node
Terms And Abbreviations
JNI global Global reference from native JNI code
JNl lecal Local reference from native JNI code
array content Reference from an array
class loader Reference from a class loader
collection Reference from a Java collection
constant pool Reference from the constant pool of a class
field Reference from an instance field of an object

instance of class Reference from an instance to its class

interface Reference through implementing an interface
map key Reference from a key in a Java map
map value Reference from a value in a Java map

menitor used The monitor of an object is being used

An object that is used in an active stack frame cannot be garbage collected.
Stack frames can be active permanently if a method calls never returns.

The thread and the method name of the stack frame are specified.

Important types of garbage collector roots are references from the stack, references created by
native code through JNI and resources like live threads and object monitors that are currently
being used. In addition, the JVM adds in a couple of "sticky" references to keep important systems
in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage collected
together with their classloader when

* no class loaded by that classloader has any live instances
+ the classloader itself is unreferenced except by its classes
+ noneofthej ava. | ang. O ass objects are referenced except in the context of the classloader

© Classes ‘Ml Allocations .. Biggest Objects K References o Time @ Inspections +

Current object set: 134 instances of java.util. HashMap$Node
4 selection steps, 4,288 bytes shallow size, Calculate retained and deep sizes Use retained objects

Incoming references A Use.. > #3 Show In Graph @ || @ i Show Paths To GC Reot
Object Retained Size Shallow Size Allocation Time (h:m:s)
[] Jjava.util HashMapSMode (0x 7702 5,344 bytes 32 bytes nfa

@ element of java.util.HashMapSNode[] (Dxcddc)
QD table of java.util.HashMap (0701
@ resourceCache of javax.swing.UIDefaults (0x7b43)
@ element of javax.swing.UIDefaults[] (Tncdb3)
D tables of javax.swing.UIManagerSLAFState (0x7b42)
@ value of java.util. HashMapSMode (0x 7Th41)
O element of java.util. HashMapSMode[] (0xc3bl)
D table of java.util. HashMap (0x6e56)
@ table of sun.awt.AppContext (0x6e53)

v R & static mainAppContext of class sun.awt.AppContext (Dx6aa)
i sticky class
DO constant of class com.sun.java.swing SwinglUtilities3 (0x3b2
DO constant of class com.sun java.swing.plaf.windows.AnimationController (0x22¢)

DO constant of class com.sun.java.swing.plafwindows.WindowsButtonUl (0xb 1)
Y - P S L R S N0-SO0 SO SNVE VY. ST S - SO X 7T

In most circumstances, classes are the last step on the path to the GC root that you are interested
in. Classes are not GC roots by themselves. However, in all situations where no custom

212

classloaders are used, it is appropriate to treat them as such. This is JProfiler's default mode
when searching for garbage collector roots, but you can change it in the path to root options
dialog.

@ Path Te GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.

O Single root O
Upto 2 roots
Allroots @

This search follows strong references only, as per the initial retention setting
for the heap dump.

Also follow soft, weak, phantom and finalizer references for this search O

I Stop search at classes IO

If you have problems interpreting the shortest path to a GC root, you can search for additional
paths. Searching for all paths to GC roots is not recommended in general because it can produce
a large number of paths.

In contrast to the live memory views, the heap walker never shows unreferenced objects. However,
the heap walker may not only show strongly referenced objects. By default, the heap walker also
retains objects that are only referenced by soft references, but eliminates objects that are only
referenced by weak, phantom or finalizer references. Because soft references are not garbage
collected unless the heap is exhausted, they are included because otherwise you might not be
able to explain large heap usages. In the options dialog which is shown when you take a heap
snapshot, you can adjust this behavior.

@ Heap Snapshot Options X

Select recorded objects

Initially, the heap walker will show only those objects that have been
recorded in the dynamic memory view section,

Perform full GC in heap snapshot @

Retain objects held by strong referencesonly ~

soft
Show Overhead Option
weak

phantom m Cancel

finalizer

Having weakly referenced objects in the heap walker may be interesting for debugging purposes.
If you want to remove weakly referenced objects later on, you can use the "Remove objects
retained by weak references" inspection.

213

@ Classes Ml Allocations EE Biggest Objects K References o Time 3:0:} Inspections +

Current object set: 63,815 objects in 1,286 classes.

1 selection step, 5,476 kB shallow size

Awailable Inspections:

* Duplicate objects Description

Remove ohjects that are retained through a weak, soft or phantom reference.
:l Collections & Arrays
This will only work for weak reference types that you have not removed when

94 Reference & field analysis taking the heap snapshot.
& \Weak references Configuration
Select weakly referenced objects Weak reference type: soft references v
Remove objects retained by weak references Status
I Stack references 0 Mot calculated @ Calculate inspection and create a new object set

0 Thread locals

© Classes & Class loaders

When searching for paths to GC roots, the reference types that were selected to retain objects
in the heap walker options dialog are taken into account. In that way, the path to GC root search
can always explain why an object was retained in the heap walker. In the options dialog for the
path to GC root search you can widen the acceptable reference types to all weak references.

@ Path To GC Root Options X

Select options for the path to root analysis:

Calculating a single path to a garbage collector root is faster and often
sufficient for memory leak detection.

0 Single roct (7]

Up te 2 roots

Allroots)

This search follows strong references only, as per the initial retention setting
for the heap dump.

I Also follow soft, weak, phantom and finalizer references for this sear(hl (7]
Stop search at classes ﬂ

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the same
type that are part of a memory leak. In many cases, the analysis of a single object will also be
valid for the other objects in the current object set. For the more general case where the objects
of interest are referenced in different ways, the "Merged dominating references" view will help
you to find out which references are responsible for holding the current object set on the heap.

214

@ Classes Ml Allocations .. Biggest Objects K References o Time 3:0:} Inspections +

Current object set: 4,474 instances of java.util.HashMap$Node
2 selection steps, 143 kB shallow size, Calculate retained and deep sizes Use retained objects

Merged dominating references ¥ || Objects to GC roots Use.. v @
E—21% - 3,647 instances Q) I SAALNCISCC LI ochMap$Node |
B 7% - 3,457 instances| GC roots to ehjects ti.LHashMap

B 1% - 931 instances O 250 instances of java.util.HashSet
W 13% - 821 instances (3 1instance of bezier.BezierAnim
1 6% - 305 instances O 33 instances of java.lang.Module
| 2% - 125 instances (Y 1 instance of sun.awt.resources.awt
| 2% - 125 instances (3.1 GC root
I 2% - 123 instances 0 class sun.font.TrueTypeFont
| 2% - 102 instances Y 1 instance of sun.awt.windows.WToolkit
| 2% - 100 instances @Y 1instance of sun.awt.windows.WDesktopProperties
| 2% - 96 instances o class sun.awt.ExtendedKeyCodes
I 1% - 89 instances (Y 1 instance of com.sun.swing.internal.plaf.basic.resources.basic
| 1% - 63 instances @Y 37 instances of java.security.Provider$Service
| 1% - 539 instances o 5 instances of java.util.Collections$UnmodifiableMap
I 1% - 51 instances Y 1 instance of java.lang.ModuleLayer
| 1% - 49 instances @ class jdk.internal.misc. VM
I 1% - 49 instances @ class iava.securitv.Provider

All references may be transitive 0

Each node in the dominating reference tree tells you how many objects in the current object set
will be eligible for garbage collection if you eliminate that reference. Objects that are referenced
by multiple garbage collector roots may not have any dominating incoming reference, so the
view may only help you with a fraction of the objects, or it may even be empty. In that case, you
have to use the merged incoming reference view and eliminate garbage collector roots one by
one.

215

E JDK Flight Recorder (JFR)

E.1 Support For JDK Flight Recorder (JFR)

DK Flight Recorder (JFR) " is a structured logging tool that records a broad range of system-level
events. Similar to the black box of an aircraft that continuously records flight data for use in
incident investigations, JFR continuously records a stream of events in the JVM for use in
diagnosing problems. The advantage of this approach is that it captures chronologically detailed
information about the system leading up to an incident. JFR is designed to have a minimal impact
on performance, and to be safe to run in production environments over extended periods of
time.

Starting with Java 17, JFR is also one of JProfiler's data sources. In addition to the native agent
that uses the profiling interface of the JVM, there are high-level systems in the JVM that are of
interest in a profiling context. One is the MBean system that provides data for some telemetries
in JProfiler, and the other is JFR that is used for the garbage collector probe [p. 118]. For that
purpose, you do not interact with JFR, but JProfiler handles JFR event streaming transparently.

JFR integration in JProfiler

JProfiler fully integrates JFR recording [p. 218], so you can easily capture data from running JVMs
on the local machine or on remote machines where JFR recording was not configured.

When you open a JFR snapshot in the JProfiler Ul, the available views and sections are different
from a regular profiling session. The centerpiece of the Ul is the event browser [p. 222]. All other
views that are available for JFR views are explained in a separate chapter [p. 229].

As you work with event types, while setting filters and viewing analyses, JProfiler will occasionally
have to rescan the JFR snapshot file. JFR snapshot files are potentially huge, and it is not viable
to hold all data in memory or to calculate all analyses upfront. Because of this, it is not
recommended to open JFR snapshots from network drives.

When opening very large JFR snapshots, you can speed up snapshot processing and reduce
memory usage by clicking on the "Customize analysis" check box in the file chooser and excluding
the event categories that are not required for your analysis. The available event categories cover
single probes and view sections. Event types for CPU views, memory views and for the telemetry
views are not optional and have to be loaded.

For example, if you are only interested in CPU data, you can exclude all probes and the event
browser. JProfiler aims to be the fastest JFR viewer and opens typical JFR snapshots quickly, but
JFR recordings are potentially unbounded and you could be confronted with a snapshot that is
tens of gigabytes in size where the opening speed may become an issue.

Stack traces in JFR snapshots

One important feature of JFR is the ability to log the entire stack trace for a certain event type in
an efficient way. For such events types, you can toggle stack trace recording in the JFR settings.
Many JVM application event types, especially the ones that are concerned with threads, have
stack trace recording enabled by default.

JFR only collects stack traces up to a fixed depth, so long stack traces are truncated. Truncated
traces are not suitable for building an understandable call tree, so these traces are shown below
a specially marked node. With the

- XX: Fl'i ght Recor der Opt i ons=st ackdept h=<nnnn>

M https://en.wikipedia.org/wiki/|DK_Flight_Recorder

216

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

VM parameter, you can increase the size of the collected traces in JFR and get rid of truncated
traces for your application.

217

E.2 Recording JFR Snapshots With JProfiler

Due to the benefits of running JFR in production JVMs with a minimal overhead and no
requirement to enable the profiling interface, JProfiler supports JFR recording directly in the Ul.
While you can start JFR programmatically or by adding the - XX: St art Fl i ght Recor di ng VM
parameter on the command line, JProfiler helps you to start and stop recordings for JVMs that
are already running.

When you attach to a JVM with JProfiler, you can choose to start and stop JFR recordings instead
of loading the native profiling agent. With JProfiler's extensive remote connection capabilities,
you can, for example, start JFR recordings in JVMs that run in Docker or Kubernetes containers
without the need to modify a container.

Starting and stopping JFR recordings

On the "Quick attach" tab of the start center, select a JVM and click on the Start JFR button at the
bottom of the dialog. Locally running JVMs are shown in the screenshot, but the same button is
also available when you attach to a remote JVM.

@ JProfiler Start Center X

Start Center

© On this computer On another computer On a Kubernetes cluster
»
Open Container m Mene, showing top level processes Select Container
Session
Status: All detected HotSpot/Open9 WMs Show Services
‘ PID Process Mame
Cuick 17804 ChUsershingo\AppDataLocal\JetBrains\ Toolbox\apps\IDEA-UNch-0N232.8660.185\ br
Attach 18228 org.jetbrains jps.cmdline.Launcher C:/Users/inge/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
bezieI.EezierAnim block
o= 21712 org.jetbrains kotlin.daemon.KotlinCompileDaemon --daemen-runFilesPath C:\Users\ingo\AppD...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
New 25664 org.jetbrains.idea. maven.server.RemoteMavenServer36
Session 26084 org.jetbrains.kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath ChUsers\ingo\AppD...
27736 Ci\Users\ingo\AppData\Local\JetBrains\ Toolbox\ bin'jre
28888 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only (7] Start JFR (7] Close

In the JFR settings wizard, you can then select one of the event settings templates that are
transmitted fromthel i b/ j f r directory of the JRE that is used by the selected process. By default,
there are two such templates, "default" and "profile", where "profile" records more data and
adds more overhead. If you create other files in that directory, you will be able to select the
corresponding templates in the wizard.

These template files contain the available events as well as configuration directives for important
high-level settings. Each of the high-level settings can be coupled to a number of different
events. This Ul is dynamically generated based on the contents of the template file. Switching
between the different profiles will show you the different default values. There are many more
event types that are not included in this Ul and which are only configurable in the next step.

If you have already started a JFR recording for a JVM with the same set of event types, JProfiler
will offer you the option to use the last settings.

218

€ JFR Settings X

1. Recording Options JFR Recording options for the selected JVM
2, Adjust Configuration
3. Finished Maximum snapshot size: 1024 | | mB @
Available templates: profile
default
Settings for the selected te
Low overhead configuratil Last used for this type of VM
Garbage Collector: Detailed hd
Allocation Profiling: Medium v
Compiler: Detailed v

If you select that option, the high-level recording settings will not be available and you can proceed
to the next step to see the entire configuration and make further changes.

Another important setting on this step of the wizard is the maximum snapshot size. Due to the
nature of JFR recordings, the size of a snapshot can increase very quickly and might fill up your
entire hard disk. To avoid that, the maximum snapshot size constraint prevents excessive storage
utilization. When the maximum size is reached, older events will be discarded while new events
will continue to be recorded. This process is an automatic mechanism of JFR.

In the next step of the wizard you can see a categorized tree of all event types with further
configuration for each event on the right side.

€ JFR Settings X
1. Recording Options Adjust selected event configuration

2. Adjust Configuration

3. Finished The configuration below is the result from your choices on the previous step. You can now make further

changes if required.

« | Settings for the selected event:

-] Flight Recorder Period: 1000 ms (2]
Data Loss [jdk.Dataloss]
Flight Recording [jdk.ActiveRecording]
Flush [jdk.Flush]
Recording Reason [jdk.DumpReason]
Recording Setting [jok ActiveSetting]
B Java Application
Statistics
Class Loader Statistics [jdk
Class Loading Statistics [|d
Direct Buffer Statistics [jdk tBufferStatistics
' Exception Statistics [jdk.ExceptionStatistics]
Java Thread Statistics [jdk.JavaThreadStatistics]
Thread Allecation Statistics [jdk Thread Allocatic
Allocation in new TLAB [jdk.ObjectAllocationinMey
Allocation outside TLAB [jdk.ObjectAllocationOuts
File Force [jdk.FileForce]
File Read [jdk.FileRead]
File Write [jdk.FileWrite]

LoaderStatistics

oadingStatist

@ Help 4 Back Next b Start Recording Cancel

Events may have a setting for a period, a threshold and a flag whether to record a stack trace
for each event or not. Both periods and thresholds are settings with time units and you can press
the down key to get a completion popup for the available units. Periods also support the special
values "everyChunk", "beginChunk" and "endChunk" that are also available from the completion
popup. A "chunk" refers to a part of a JFR recording which holds a contiguous set of event data
and metadata and functions as the basic unit of storage and data transport in a recording.

The more events are selected in the tree, the more data is being recorded. Some event types
generate huge amounts of data while some generate only few events.

219

Unlike the full profiling mode or the "Heap dump only" mode where you immediately see some
data in the Ul, starting a JFR snapshot only modifies the background color of the VM in the table
when it is not selected so you can see that JProfiler has started a recording. When the JVM is
selected, the text of the JFR button at the bottom now shows you that recording will be stopped.

@ IProfiler Start Center X

Start Center

' o On this computer On another computer On a Kubernetes cluster
Open Container: | [l Mone, showing top level processes Select Container
Session
Status: All detected HotSpot/Open)9 IWMs ~ Show Services
‘ PIDY Process Mame
Quick 17804 ChUsershingo\AppData'\Local\letBrains\ Toolbox\apps\IDEA-U'ch-01232.8660.185\jbr
Attach 18228 org.jetbrains jps.cmdline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/apps/IDEA-...
beziel.EezierAnim block
[® il 21712 org.jetbrains. kotlin.daemon.KetlinCompileDaemon --daemen-runFilesPath Ch\Users\ingo\AppD...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
Mew 25664 org.jetbrains.idea.maven.server.RemoteMavenServer36
Session 26084 org.jetbrains. kotlin.daemon.KetlinCompileDaemen --daemen-runFilesPath C\Users\inge\AppD...
27736 C:\Usershingo\AppData'Local\JetBrains\ Toolbox'\bin'\jre
23883 org.gradle.launcher.daemon.bootstrap.GradleDaemon 8.3
Open
Snapshots
Legend: Profiling agent loaded JProfiler GUI connected Offline mode JFR running

m Heap Dump Only (7] Stop JFR (7] Close

When you stop a JFR recording that was started by JProfiler, a JFR snapshot will be transferred
and opened in JProfiler. The snapshot is temporary and will be deleted when you close the
window. To save the snapshot to a permanent location, use the "Save snapshot" action in the
toolbar.

@ Session View Profiling Window Help IJProfiler — [m] *
L& H 9

set | sae Stz 5 Start o add o View el

Cemer | Snzpsher R T un&t g “FE camings =5

Event Browser
Flight Recorder (220 events)
Sanr N X Java Application (347 events)

Terminated JVMs with JFR recordings

One mentioned use of JFR is to investigate the moments before a crash. In that case, the VM
will not be available in the JVM table anymore to stop JFR recording and open the JFR snapshot.
If a JFR recording has been started in JProfiler and the JVM terminates before you stop the
recording, a special entry prefixed with "Terminated JFR:" will be added to the JVM table. By
double-clicking on that entry or using the "JFR" button, you can open the JFR snapshot.

220

@ Attach To Running JVM X

© On this computer On another computer On a Kubernetes cluster

Container: | [l Mone, showing top level processes Select Container

Status: All detected HotSpot/OpenJ9 JVMs ¥ Show Services

FID Process Name
17804 ChlUsers\ingohAppDatatLocal'JetBrains\ Toolbox\apps\IDEA-U\ch-0h232.8660.185 jbr
18228 org.jetbrains.jps.cmdline.Launcher C:/Users/ingo/AppData/Local/JetBrains/Toolbox/a..,
20544
2172 org.jetbrains.kotlin.daemon.KotlinCompileDaemon --daemon-runFilesPath C:h\Users\i...
22236 org.gradle.wrapper.GradleWrapperMain --daemon screenshotsLightEn
25664 org.jetbrains.idea.maven.server. RemoteMavenServer36
26084 org.jetbrains.kotlin.daemon KotlinCompileDaemon --daemon-runFilesPath C:\Users\i...
27736 C:\Users\ingo\AppData\Local\JetBrains\Toolbox\binljre
28888 org.gradlelauncher.daemon.bootstrap.GradleDaemon 8.3
Legend: Profiling agent loaded IProfiler GUI connected Offline mode JFR running
Heap Dump Only Open Snapshot | @ Open Cancel

Once you open such an entry, it will be removed from the list. Just like for recordings that are

stopped manually, the opened JFR snapshot will be temporary and you have to save it if you
want to keep it for later analysis.

Showing externally started JFR recordings

In the example above, the JFR recording has been started and stopped in JProfiler. JFR recordings

that are started outside JProfiler can also be shown. Continuous JFR recordings can easily be
started with a VM parameter like

"-XX: StartFlight Recor di ng=naxsi ze=500m~f i | ename=$TEMP/ nyapp. j f r, nane=Cont i huous
recor di ng"

The indication via the special background color in the JVM table that a JFR recording is running
only refers to JFR recordings that were started in JProfiler. If you connect to a JVM where a JFR
recording has been started by other means, another dialog will be shown.

© Select JFR recording *
Existing JFR recordings have been found in the selected WM. You can start a new
recording frem JProfiler or dump an existing recerding and open the resulting JFR

snapshot in JProfiler.

Start a new JFR recording from JProfiler

In Open a JFR snapshot for the selected rEcUrding:I

Continuous recording [running]

OK Cancel

You can now choose to start a new recording in JProfiler or to dump an existing recording and

show the resulting JFR snapshot in JProfiler. Externally started JFR recordings have a separate
life cycle and will not be stopped by JProfiler.

221

E.3 The JFR Event Browser

The event browser shows all data that has been recorded in a JFR snapshot.

Event Browser
Flight Recorder (246 events

Java Application (13,960 events)
Telemetries .
Statistics (519 events)
. Allocation in new TLAB (11,096 events) [j
Memery .Al\n(at\nn outside TLAB (2,713 events) [jd

. File Force (0 events) [jdk.FileForce]
. File Read (0 events) [jdk.FileRead]
. File Write (0 events) [jdk.FileWrite]
.Java Error (22 event: JavaErrorThrow]
Threads . Java Exception (435 events) [jdk.JavaExceptionTt Select an event type to view data
. Java Monitor Blocked (0 events) [jdk.JavaMonitc
. Java Monitor Inflated (D events) [jdk.JavalMonito
. Java Monitor Wait (4,403 events) [jdk.JavaMonit:
. Java Thread End (72 events) [jdk. ThreadEnd]
Probes . Java Thread Park (330 events) [jdk. ThreadPark]
. Java Thread Sleep (1 event) [jdk.ThreadSlesp]
. Java Thread Start (72 events) [jdk. ThreadStart]
. Socket Read (73 events cketRead]
. Socket Write (0 events) [jd
Java Virtual Machine (2

CPU Views

Menitors & Locks

© D luimpbp @

JFR organizes event types into hierarchical categories that make up the tree on the left side of
the event browser. You can select a single event type to show the recorded events. By default,
JProfiler shows all registered event types, even if no events were recorded for them. Alternatively,
you can choose to hide empty event categories in the view settings dialog.

JFR events

Events are shown as rows in the main table with the columns depending on the selection in the
tree of event types.

> Filter in all text columns ~ * i -

Flight Recorder (2 Start Time Duration Event Thread & Class Parked On

Java Application 0:02.901 [Jul 18, 558 ms AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
Statistics (519 events) 0:03.913 [Jul 101 ms TimerQueue (ID 32 java.util.concurrent.locks.2
. Allocation in new TLAE | 0:03.913 [Jul 101 ms AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2
0:04.014 [Jul 15 16,097 ps TimerQueue (ID 32 java.util.concurrent.locks.2

Allocati tside TLAB N
@ atocation outice 0:04.015 [Jul 19 15,423 ys AWT-EventQueue-0 (ID 77) java.util.concurrentlocks.A
. File Force (0 events) _U:”"' 0:04.212 [Jul 154 ms TimerQueue (1D 32 Jjava.util.concurrent.locks.?
. File Read (0 events) [jdk.| 0:04.213 [Jul 35,841 ps AWT-EventQueue-0 (|0 27) java.util.concurrentlocks.2
. File Write (0 events) [jdk. 0:04.256 [Jul 61,973 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2

. Java Error (22 events) [jd| 0:04.325 [Jul 41,154 ps AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.?

. Java Exception (455 even 0:04.602 [Jul 15, 202 PM] 10,182 ps TimerQueue (ID 32 java.util.concurrent.locks.?

. Java Menitor Blocked (0 Total from 530 rows: 115s

. Java Monitor Inflated (01

.Java Monitor Wait | o + Selection 1, Hot Spots i Call Tree 2 Time Line M Duration »

] e

@ Java Thread End (72 cvc ‘ 0:10 020 030 0:40 0:50 1:00

Java Thread Park (530 ev 100 1 I I ! I I

. Java Thread Sleep (1 ever
.Java Thread Start (72 eve
.SD(kEtREEd‘._'S events) | 1
. Socket Write (0 even
Java Virtual Machine (%

10

530 events log /@ /Q ;D {‘;

The events in the table are sorted chronologically by default. To avoid overloading the Ul, only
the first 10000 events are shown in the table. The analyses at the bottom are always calculated
from all events. If you set a filter, it will also check all events, not just the first 10000. This means
that when setting a filter, events may show up in the table that were previously not displayed.

222

You can also select multiple event types or entire categories. In that case, the union of all
selected events is shown in the table. Because each event type has its own set of columns, only
those columns that are common to all selected event types will be included.

-

Flight Recorder (245 events)
Java Application 0

Statistics (519 events)
0 Allocation in new TLAB |
D Allocation outside TLAB

’ Java Exception (435 even
Olava Monitor Blocked (0

Filter in all text columns

Start Time
0:00.266 [Jul 19,
0:00.391 [Jul
0:00.625 [Jul 19
0:00.687 [Jul

PM]

0:01.394 [Jul

At 204 T

Event Type
Java Thread End
Java Thread End
Java Thread End
Java Thread End

Java Thread End

laven Therad Evd

Event Thread @
C2 CompilerThread7 (1D 13)
C2 CompilerThreadt (1D 12)
C2 CompilerThread5 (1D 11)
C2 CompilerThreadd (1D 10)

. 0:00.813 [Jul PM] Java Thread End €2 CompilerThread3 (1D 9)
@ File Force (0 events) ok p.00.813 [] Java Thread End €2 CompilerThread2 (1D &)
@ File Read (0 events) ikl |0:00.814 Jul V1] Java Thread End C2 CompilerThread1 (1D 7)
’ File Write (0 events) [jdk. 0:01.236 [Jul PM] Java Thread End C2 CompilerThread5 (1D 11)
O Java Error (22 events) [jd 0:01.346 [Jul PM] Java Thread End C2 CompilerThreadd (1D 10)

C2 CompilerThread3 (1D 9)

[U, , W, W)

602 rows
D Java Menitor Inflated (01
e -
DJava Menitor Wa i Time Line
EEERER RN R R R R R R RN R R R RN R R R R R R R R R RN R R R R RN T
- o ezl : 0:10 0:20 0:30 0:40 0:50 1:00
* Java Thread Park (330 ev 100 Il Il 1 I I I
O Java Thread Sleep (1 ever 10
‘ Java Thread Start (72 eve
OSD(kEtREEd‘_'S events) | 1
‘ Socket Write (0 even
Java Virtual Machine (2 602 events log p }3 p n‘.""{

The number of available analyses may also be reduced because analysis views are added based
on the available columns.

Column widths are adjusted automatically based on their actual content until you resize a
column. Then, the width of columns with the same content type will be fixed to your selection
and will not change automatically anymore until you clear the column widths in the view settings
dialog. Scales in columns with units like time or memory are also calculated automatically for
each cell. If you prefer to fix the scale of a column for better comparability, the view settings
dialog offers an option for each such column. In this case, the setting is persisted separately for
each selected event type.

© JFR Events View Settings X

General HotSpotsand Call Tree Time Line Histograms

Time Axis
Scale to fit window 0

Show Bookmarks

Maone In time scale Oln entire view

Grid Lines for Time Axis

MNone At major ticks (€) At major and minor ticks

Grid Lines for Vertical Axis

Mone At major ticks) At major and minor ticks

Event Counts

Legarithmic display for event counts

Cancel

223

There are several ways to filter events. At the top of the table, there is a filter selector that allows
you to filter in all text columns or to select a single column and configure a filter that matches
the column type.

"7 Duration - > v 500 | % | ms A + Add

Flight Recorder (245 events) Duration 2 500 ms

0 eve

Java Application (19

Start Time Duration Event Thread & Class Parked On
Statistics (519 events) -

0:02.901 [Jul 18 558 ms AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2
@ Allocation in new TLAB (0,04,905 [1ul 1 735 ms TimerGueue (10 32 java.util.concurrent locks.2
. Allocation outside TLAB 0:05.564 [Jul 15 573 ms AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
. File Force (0 events) [jdk. 0:03.857 [Jul 19 676 ms TimerQueue (10 32 Java.util.concurrent.locks.A
. File Read (0 events) [jdk.| 0:06.382 [Jul 19, 508 ms TimerQueue (1D 22 java.util.concurrent.locks.?

0:06.888 [Jul 19
0:08.232 [Jul 18,

696 ms TimerQueue (1D 22
606 ms TimerQueue (1D 22

java.util.concurrent.locks.?
java.util.concurrent.locks.?

. File Write (0 events) [jdk.
@ Java Error (22 events) [jd

0:08.839 502 ms TimerQueue (1D 22 java.util.concurrent.locks.2

@ Java Exception (455 even | nannancs enan P i - K i oa
. Java Manitar Blocked (0 Total from 89 rows: 51,573 ms
. Java Menitor Inflated (01
. Java Monitor Wait | a + Selection 1, Hot Spots & Call Tree 2 Time Line Iml Duration +

o R R R R R RN R R R AR RN EEREEEREREE
@ Java Thread End (72 eve ‘ 0:10 0:20 030 040 0:50 00
.Java Thread Park (530 ew 10 ! 1 L 1 1 I I
. Java Thread Sleep (1 ever | I

.Java Thread Start (72 eve 1
. Socket Read (75 events) |

. Socket Write (D ever
Java Virtual Machine

89 events log FelipcInt SIRE: |

Another way to filter is to select a row of interest and use the context menu to select a specific
filter based on the values in the selected row. The filter selector at the top will be adjusted, so
that it displays your selection. You can now choose another value and add the filter again, it will
then replace the previous filter for the same column. In general, each filter type can only be
present once and setting the same filter again will replace the previous filter.

= Duration v oz i 500 | ¥ | ms v ' Add

Start Time Duration Event Thread 0 Class Parked On

v 0:02.907 [Jul 19, 20. 7 559 ms AWT-EventQueue-0 (1D 27) java.util.concurrentlocks.2
Statistics (519 events) 0:03.913 [Jul 19, 2 ettt — F=—=til.concurrent.locks.2
. Allocation in new TLAB | Filter Equals This Duration Jtil.concurrent.locks.2

@ Allocation outside TLAE S Filter Greater Than This || Event Thread JS:-wﬂcurrent-:oc:&i
: Filter Less Than This | Event Thread ID L COREUITEMT, OC .

@ File Force (0 events) [k, 0:04.212 [Jul 19, 2 stil.concurrent locks.A

Java Application

@ FileRead (0 cverts) gkl [0:04213 001190 got Fuerts y| ClassParked On atil.concurrent.locks. 2

. File Write (0 events) [jdk. 0:04.256 [Jul 19, 2 /O Find ChleF Park Timeout dtil.concurrent.locks. 2
o 1 n rl+

. Java Error (22 events) [jol |0:04.325 [Jul \i. _ Address of Object Parked Jt!l.(oncunent.lo(ks.i-‘

. Java Exception (455 even 0:04.602 [Jul 19, 3 ¢ Export View CirleR [s=—dtil.concurrent.locks.?

Total from 5301
View Settings Ctrl+T
V Selection 1\, Hot Spots ok Call Tree Q; Time Line m Duration *+

.Java Menitor Blocked (0
. Java Menitor Inflated (0
.Java Menitor Wait (4,403

@z o | 1R T T
.Java Thread Park (330 ew 100 | | | I | |
. Java Thread Sleep (1 ever 10

@ Java Thread Start (72 eve

.SD(ketReadu"E events) | 1

. Socket Write (0 ever

Java Virtual Machine (2 530 events log /@ /Q ;3 [‘;

Stack traces

In JProfiler, the stack trace of a selected event is visible in the "Selection" tab of the split pane
below the event table.

224

7] Flight Recorder (246 events)

7 Java Application [
[T statistics (519 events)
. Allocation in new TLAE (
. Allocation outside TLAB
. File Force (0 events) [jdk.
@ File Read [0 events) [jdk.|
. File Write (0 events) [jdk.
@ Java Error (22 events) [jd
. Java Exception (435 even
@ Java Monitor Blocked (0
. Java Monitor Inflated (0«
. Java Monitor Wait (4,405
. Java Thread End (72 ever
(@ Java Thread Park (530 ew
@ Java Thread Sleep (1 ever
. Java Thread Start
. Socket Read (7
. Socket Write (0 events

7 Jave Virtual Machine

events) |

li

If you select multiple events, the selection tab changes to a view that shows you either the hot
spots or the cumulated call tree calculated from the stack traces of the selected events.

[Flight Recorder (246 events)

,960 eve

7 Java Application [
[T Statistics (519 events)
. Allocation in new TLAB [
. Allocation cutside TLAB
. File Force (0 events) [jdk.

events) [jdk.|
. File Write (0 events) [jdk.
. Java Error (22 events) [jdl
. Java Exception (4
. Java Monitor Blocked (0
@ Java Monitor Inflated (01
. Java Monitor Wait (4,403
. Java Thread End (72 ever
(@ Java Thread Park (530 ew:
. Java Thread Sleep (1 ever
@ Java Thread Start (72 eve
. Socket Read (73 events) |
@ Socket Write (0 events) [j

7 Jave Virtual Machine

ven

Filter in all text columns ~ *

Start Time
1 [Jul 1

Duration Event Thread &

| 550 ms|AWT-EventQueue-0 (ID 27)

Class Parke

java.util.concurrent.locks. A

0:03.913 [Jul 19, 2023 101 ms TimerQueue (1D 32) java.util.concurrent.locks.2
0:03.913 [Jul 19, 2023 101 ms AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
0:04,014 [Jul 1%, 2023 16,097 s TimerQueue (1D 32) Jjava.util.concurrent.locks.?
0:04,015 [Jul 19, 2023 15,423 ps AWT-EventQueue-0 (|0 27) java.util.concurrentlocks.2
0:04.212 [Jul 19, 2023 154 ms TimerCQueue (1D 22) java.util.concurrent.locks.?
0:04,213 [Jul 18, 2023 35,841 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
10:04,256 [Jul 19, 2023 61,973 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
10:04.325 [Jul 18, 2023 41,154 ps AWT-EventQueue-0 (ID 27) java.util.concurrent.locks.2
10:04.602 [Jul 15, 2023 10,182 ps TimerQueue (ID 32) java.util.concurrent.locks.2
Total from 530 rows: 115s
+ Selection 1, Hot Spots &L Call Tree @ Time Line [Duration

Stack trace:

jdkinternal.misc.Unsafe park(boolean, long)
java.util.concurrent.locks.LockSupport.parkijava.lang. Object)

Java.util.concurrent.locks. AbstractQueuedSynchronizerS ConditionObject.await()
Java.awt.EventQueue.getMextEvent()

java.awt.EventDispatchThread. pumpOneEventForFilters(int)

java.awt.EventDispatchThread. pumpEventsForFilter(int, java.awt. Conditional, java.awt.EventFilter)

Filter in all text columns ¥

Start Time Class Parke
.util.concurrent.locks.
.util.cencurrent.locks.

.util.concurrent.locks.

48 PM]
43 PM]

10:04.014 [Jul 15, 2023 PM] 16,087 ps TimerQueue (ID 32) java.util.concurrent.locks.2
0:04.015 [Jul 18, 2023 PM] 15,423 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
0:04.212 [Jul 18, 2023 3 PM] 154 ms TimerQueue (10 32) java.util.concurrent.locks.2
0:04.213 [Jul 18, 2023 PM] 35,841 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.2
0:04.256 [Jul 19, 2023 3 PM] 61,973 ps AWT-EventQueue-0 (|0 27) java.util.concurrent.locks.2
0:04,325 [Jul 19, 2023 PM] 41,134 ps AWT-EventQueue-0 (1D 27) java.util.concurrent.locks.?
0:04,602 [Jul 19, 2023 3 PM] 10,182 ps TimerQueue (ID 32) java.util.concurrent.locks.?
Total from 530 rows: 115s
+ Selection 1, Hot Spots & Call Tree @g Time Line ﬂ Duration
Call tree from selected events hd Calculate hot spots for event counts hd

() m—56,7% - 2 evt. java.awt EventDispatchThread.run
()™= 33.3% - 1 evt. java.lang. Thread.run

By default, event counts determine the percentages on the nodes in the call tree and hot spots
views. Some event types include other measurements that are suitable for this purpose, such
as a duration or allocated memory. If such measurements are available, you can select them as
the hot spot type from the second drop down in the selection tab.

225

Flight Recorder (2
Java Application (15,
Statistics (519 events)
. Allocation in new TLAE (
. Allocation outside TLAB
. File Force (0 events) [jdk.
. File Read (0 events) [jdk.l
. File Write (0 events) [jdk.
@ Java Error (22 events) [jd

Filter in all text columns

Start Time

0:00.017 [Jul 19,
0:00.017 [Jul 19,
0:00.019 [Jul
0:00.020 [Jul
0:00.000 [Jul

- [

Event Thread @

RMI TCP Connection{1)-
RMI TCP Connection(1)-

RMI TCP Connection(1)-

RMI TCP Connection(1)-192.168.2...]
RMI TCP Connection(1)-192.168.2... java.lang.5tring

Object Class @

.internal.org.objectweb.asm
ava.lang.StringBuilder

0:00.000 [Jul 13,
Cutoff total from 10,000 rows:

JFR Periodic Tasks (D 46) jdkjfrinternal SecuritySuppert!

. Java Exception (435 even
. Java Monitor Blocked (0
. Java Menitor Inflated (01
. Java Monitor Wait (4,405
. Java Thread End |
. Java Thread Park

& Selection

aCaHTreE

Hot spots with backtraces from selected events = I Calculate hot spots for "Allocation Size" |

1., Hot Spots Q?TlmeLine mAIIDcatiEP

ever

. . Hot Spot Memory Average Memory Events

Java Thread Sleep (1 eve — X

.J Thread Start (72 i jdkinternal.org.objectweb.... I 2,064 bytes (55 %) 2,084 bytes 1
ava Thread start (12 eve i jdk.internal.org.objectweb.... I 1,504 bytes (40 %) 1,504 bytes 1

. Socket Read (75 events) | % java.util. Arrays.copyOfRange | 128 bytes (3 %) 42 bytes 3

. Socket Write (0 even L. java.lang.Stringlatini.newS... 24 bytes (0 %) 24 bytes 1

Java Virtual Machine

The "Hot spots" and the "Call tree" views in the lower split pane contain the same views, however,
they are calculated for all events in the snapshot. Similar to the selection tab, they also have
a "hot spot type" drop down. In addition to showing all events, you can also select a filter from
these views. In the call tree view, selecting a particular call stack and clicking on the Filter selected
button will only show events with that call stack in the table above. For the hot spots view, you
can either select the hot spot at the top level or any node in the back trace, so that only events
will be shown whose stack trace ends with the inverted call stack fragment to the selected node.

Filter in all text columns = Cb -

Selected hot spot with backtrace I

Start Ti Event Thread 0 Object Class ﬂ Allocation Size TLAB Size
0:05.084 [Jul 19 FM] AWT-EventQueue-0 (1D 27) byte[] 56 bytes 40,000 bytes
0:05.108 [Jul PM] AWT-EventQueue-0 (ID 2 byte[] 208 bytes 40,152 bytes
0:05.126 [Jul PIM] AWT-EventQueue-0 (1D 2 byte[] 112 bytes 40,056 bytes
0:05.129 [Jul PI] AWT-EventQueue-0 (10 2 byte[] 192 bytes 40,136 bytes
0:05.132 [Jul PI] AWT-EventQueue-0 (1D 2 byte(] 192 bytes 40,136 bytes
0:05.139 [Jul PI] AWT-EventQueue-0 (1D 2 byte[] 184 bytes 40,128 bytes
0:05.140 [Jul PI] AWT-EventQueue-0 (1D 2 bytel] 200 bytes 40,144 bytes
:05.141 [Jul PI] AWT-EventQueue-0 (1D 2 byte(] 184 bytes 40,128 bytes
0:05.142 [Jul 19, FM] AWT-EventQueue-0 (1D 27) byte[] 288 bytes 40,232 bytes
Total from 400 rows: 65,928 bytes 10,004 kB
+ Selection 1, Hot Spots &5 Call Tree @4 Time Line m Allocation Size m TLAB Size
Calculate hot spots for "Allocation Size” ~ Rernove Filter Calculated from all 11,096 events
Hot Spot Meraory Average Memory Events
i java.util. Arrays.copyOf(byte[], int) I 13 kB (35 %) 1,163 bytes 613

0- 31.6% - 635 kB - 50 hot spot alloc. jdk.internal loader.Resource.getBytes
vy om

3.3% - 63,928 bytes - 400 hot spot alloc. java.lang.AbstractStringBuilder.ensureCapacitylnternal
(@13.2% - 65,216 bytes - 394 hot spot alloc. java.lang.AbstractStringBuilder.append(java.lang.String)
@ 0.0%-T712 bytes - 6 hot spot alloc. java.lang.AbstractStringBuilder.append(char)

(M_0.3% - 6 760 hutes - 89 hot snot allac. iava.utilzin ZioFileSSource.aetFntruPos

In the screenshot above, you can see that a node in the backtrace was selected as the filter node.
In addition to the regular call tree icon, it also includes a check mark. You can remove filters with
the tag label at the top or via the Remove filter button. The event count in the table is equal to
the number on the selected node. The hot spot tree still shows all events without the filter that
was set in the hot spot view.

This is a general feature of filters that are set from the analysis views: The analysis view itself is
calculated from all filtered events, but excluding the filter that was set in the analysis view.
This makes the analysis view more useful because you can see what part of the total event set
you have selected there.

226

Time line view

All JFR events have associated times, so every event type or set of event types has a time line
view that shows the chronological distribution of events.

Filter in all text columns + v

Selected hot spot with backtrace Event starttime 10sto 20 s

Start Time Event Thread & Object Class (7] Allocation Size TLAB Size
0:10.154 [Jul 19 1] AWT-EventQueue-0 (1D 27 byte(] 192 bytes 70,152 bytes
0:10.155 [Jul 1 AWT-EventQueue-0 (1D 27 byte(] 104 bytes 70,064 bytes
0:10.160 [Jul 1 AWT-EventQueue-0 (1D 27 byte(] 200 bytes 70,160 bytes
0:10.161 [Jul 1] AWT-EventQueue-0 (1D 27 byte(] 192 bytes 70,152 bytes

0:10.163 [Jul 1] AWT-EventQueue-0 (1D 27 byte(] 104 bytes 70,064 bytes
0:10.163 [Jul] AWT-EventQueue-0 (1D 27 byte(] 200 bytes 70,160 bytes
%:10.418 [Ju 1] AWT-EventQueue-0 (1D 27 byte(] 56 bytes 37,472 bytes
0:10.454 [Jul] AWT-EventQueue-0 (1D 27 byte(] 104 bytes 37,520 bytes
0:10.454 [Jul 19 M) AWT-EventQueue-0 (1D 27 byte(] 104 bytes 37,520 bytes
Total from 198 rows: 31,464 bytes 3,466 kB
+ Selection 1, Hot Spots & Call Tree Q;' Time Line M Allccation Size M TLAE Size
I I I R A A I I A A A A R A A S N R A SR S A A A SN R A S B A S A N A BN S AN I AN S OB A AN AN O
0:10 0:20 0:30 0:40 0:50 1:00
100 o | }
; E ‘I II
'] il 1
198 out of 400 events log FcAFINE SIRE - Ab 4

To focus on a particular time range, you can drag along the time axis. In the above example,
we now have two filters: A filter from the backtrace of a hot spot and the filter from the timeline
view. Again, the time line view continues to show the entire time range while other analysis views
will now only show events from the selected time range.

The default display mode is logarithmic, so that regions of low event counts are still visible
against regions of high event counts. You can switch to linear mode by deselecting the /og button
below the time line. By default, the entire time range is shown in the available width, but you
can switch to a variable time range and zoom and scroll just like in the other telemetries in
JProfiler. Also available are bookmarks where you can add a vertical marker at selected time
ranges. In that way, you can compare moments in time across different event types.

Histogram views

All measurements that can be summed for multiple events, such as durations and allocation
sizes, are treated in a special way: First, the columns of these measurements in the event table
have a total value at the bottom. Second, the call tree and hot spot analysis views offer a "hot
spot type" drop-down to calculate their trees with these measurements instead of event counts.
Finally, for each such measurement, a histogram analysis is added to the lower split panel.

227

Filter in all text columns =
Duration 905 ms to 1,806 ms

Start Time
0:00.342 [Jul 19
0:13.976 [Jul
0:22.375 [Jul 19,

PM]
PM]
07 PM]

Duration Event Thread &)
1,087 ms TimerQueue (1D 22)
1,358 ms TimerQueue (1D 22
1,647 ms TimerGueue (10 27)

Class Parked On
java.util.concurrent.locks.AbstractQueuedSy...
java.util.concurrent.locks. AbstractQueuedSy...
Jjava.util.concurrent.locks. AbstractQueuedSy...

Park Timeout

M Park Timeout
e N R

35

Total from 3 rows: 4103 ms
" Selection 1., Hot Spots & Call Tree O,;'Tlme Line [l Duration
B B e I AN B e e B By B e B
" 1s 25
5 1000
@
o
g
2
3 out of 530 events Duration

Histograms show event counts on their vertical axis while the horizontal axis shows the selected
measurement and is divided into a number of bins, so that a distribution can be calculated. Bin
sizes and event counts are available from the tooltip.

The screenshot above shows how a filter has been setin the histogram. Just like for other analysis
views, the filter only applies to other analysis views, and the entire histogram is still shown. As
for the timeline view, the histogram has a logarithmic vertical axis by default. Here, the selected

events in the screenshot would not be visible with a linear axis.

228

E.4 Views In JFR Snapshots

Apart from the JFR event browser [p. 222], JProfiler uses some of the views that are available for
full profiling sessions and fills them with JFR data. This is possible because JFR collects data for
memory allocations and method executions. The main limitation is that the recording rates are
low, so getting enough data to see problematic hot spots can take a long time.

Telemetries

With the exception of the "Recorded objects telemetry", all telemetries in full profiling sessions
are also available in JFR snapshots with some limitations in the displayed data. The memory
telemetry does not show GC-specific pools, the threads telemetry does not show thread counts
by thread state and the recorded throughput telemetry shows sizes instead of object counts
and does not show the objects that being freed.

Event Browser

’ Telemetries

Overview Memory

Memery

Recorded Throughput oM
GC Activi
ctivity Recorded Throughput
Classes
oM

Threads s

CPU Load
GC Activity
'!'J' Memary -

I CPU Views ‘ ‘ ‘ ‘

©o- Row heightt ——@ &
Threads p p jj

=
:

A A

Fa

The table below shows the event types that are used by the various telemetries and whether
they are enabled in both the "default" and the "profile" template.

Telemetry Event types Enabled in profile
Memory jdk.GCHeapSummary, jdk.MetaspaceSummary all
Recorded throughput jdk.ObjectAllocationSample, profile only

jdk.ObjectAllocationInNewTLAB,
jdk.ObjectAllocationOutsideTLAB

GC activity jdk.GarbageCollection all
Classes jdk.ClassLoadingStatistics all
Threads jdk.JavaThreadStatistics all
CPU load jdk.CPULoad all

Memory views

In the "Memory" section, two different event types are used to populate the views with data. The
"Live objects" view shows you a statistical representation of all classes and instance counts that
remain on the heap after a full garbage collection. This data is only available if the j dk.
Obj ect Count event is enabled, which is not the case for either of the default JFR templates,

229

because it comes with a significant overhead. You can also toggle this setting in the high-level
JFR configuration with the "Garbage collector" drop-down. Prior to Java 17, this drop-down is
labeled as "Memory profiling".

Ifthej dk. Obj ect Count eventwas recorded more than once in the snapshot, the view will show
you the difference between the first and the last occurrences of the j dk. Cbj ect Count
event. In that way, you get a sense of how the numbers changed during the recording time and
may provide some indication of a memory leak. If these times do not coincide with the start and
end points of the snapshot recording, corresponding bookmarks are added in the telemetry
views. Only classes with a total object size above a fixed threshold (usually 1% of the heap) are
included.

For any serious investigation consider using a full profiling session [p. 70] or taking an HPROF
snapshot [p. 202].

Event Browser Aggregation level: | @ Classes v
Mame Instance Count Difference Size
’ _ byte[] I 173105 (23 %) +102,063 (+134.0%) 17,000 kB
[EEmE java.lang.String I 172,720 (23 %) +08.477 (+133.0%) 4,145 kB
java.utilHashMapSMode I 66,792 (3 %) +30,545 (+321.0 %) 2121 kB
Jjava.util.concurrent.Conc... I 54,363 (4 %) +11,527 (+50.0 %) 1,099 kB
n':'- Memory long[] I 29308 (4 %) nia 2,403 kB
jdkinternaljimagelmage... Il 27,209 (3 %) n/a 633 kB
Live Objects jdk.internal jimageImage... Il 27,209 (3 %) n/a 870 kB
. javaang.Object(| M 25838 (3 %) +8,242 (+47.0 %) 1,492 kB
Recorded Objects java.util HashtableSEntry [24,457 (3 %) 10,110 (+70.0 %) 782 kB
T S . jeva.lang.Object M 19,661 (2%) +5,424 (+38.0 %) 314 kB
java.util LinkedHashMaps... Il 19,430 (2 %) +14,031 (+260.0 %) 777 kB
Allocation Hot Spots javalang.Class] | W 17,595 (2 %) +2,833 (+19.0 %) 375 kB
jeva.util HashMapShodel] I 15,243 (2 %) +10,005 (+191.0 %) 1,148 kB
I javalang.reflectMethod M 14,949 (2 %) +1,597 (+12.0 %) 1315 kB
CPU Views . . .
javaang.Class M 14538 (1%) +4,897 (+51.0 %) 1,757 kB
java.util ArrayList Wize4201%) +5,529 (+76.0 %) 308 kB
= Threads java.lang.ref. WeakReferen... ll 12,215 (1 %) +2 18 (+25.0 %) 390 kB
- java.util LinkedHashMap | 11,335 (1 %) n/a 634 kB
it] 09137 (1%) +3,042 (+50.0 %) 9,254 kB
MmN i fmvem lmme nf CnfiDofmenn -~ B 013071 O L3010 33 8 275 LD
g Monitors & Locks Total from 22 rows: 744,845 (100 %) +424,119 (+132.0 %) 48,390 kB
. > @

The "Recorded objects" view as well as the allocation views show you data from the j dk.
Obj ect Al | ocat i onSanpl eevent since Java 16 and the j dk. Qbj ect Al | ocat i onl nNewTLAB
and j dk. Obj ect Al | ocat i onCut si deTLAB events in earlier Java versions. The "Allocation
Profiling" drop-down in the high-level Ul also provides a way to enable these event types.

Contrary to the "Live objects" view, they only show objects that were allocated while recording
was active. Allocations are sampled by JFR but the size is reported as an estimate for the total
allocated size. Because of this discrepancy, the sizes reported by these views do not correspond
to the sample count multiplied by the average instance size. Otherwise, these views have similar
functionality to the memory views in full profiling session [p. 70].

CPU views

The "CPU views" include the call tree, the hot spots view as well as the call graph. Data in the
"Runnable" thread state is based on the j dk. Execut i onSanpl e events that are recorded by
default in both standard JFR templates. However, the sampling rate is set to 20 ms by default,
which corresponds to the "Normal" option of the "Method sampling" setting in the JFR high-level
Ul. Considering that JFR only samples a very small number of random threads, getting sufficient
data so that hot spots stand out sufficiently can take a very long time. Consider lowering the
period for thej dk. Execut i onSanpl e if necessary. Keep in mind that this can lead to very large
snapshot sizes because JFR does not cumulate data.

230

Thread status: 0 Thread selection: Aggregation level: Hot spot options:
Event Browser

B Runnable v @8 Althread grou.. v | @ Methods v | | Self events Al
’ Hot Spot Self Events Average Time Invocations
LS idkinternal irtfs.)rtPath.n... NN 37 (11 %) n/a n/a

java.util HashMapSTree... NN 25 (7 %) nfa nfa

i
1. ji2000.2k.entropy.encod... I 17 (5 %) na nia
":‘. Memery i java.lang.StringLatin.ha... [15 (4 %) n/a n/a
1. jj2000.2k.entropy.encod. 13(4%) nfa n/a
. 1j2000.12k.entropy.encod. 13(43%) na nia
I CPU Views & java.io.BufferedinputStre, 12(3 %) na n/a
1. java.lang.StringLatint.las... 11 (3%) nfa n/a
Call Tree 1. java.lang.AbstractStringB... Il 7 (2 %) nfa n/a
i, java.nio fileFiles.provider [l 6 (1 %) nfa n/a
Hot Spots %, java.util SpliteratorsS1Ad... Il 5 (1 %) nfa nfa
1. ji2000.2k.wavelet.analysi... Il 5 (1 %) nfa n/a
Call Graph i java.awtimage.Compoen... Il 4 (1 %) nfa n/a
%, java.util. HashMap.getho... ll 4 (1 %) nfa nfa
f=—3 % java.util HashMap.putval 4 (1 %) nfa n/a
= i, com.ejt.framewerk.grap... W 3 {0 %) nfa nia
%, java.util zip ZipFileSSourc... I 3 (0 %) nfa n/a
1. ji2000.2k.codestream.wri.., ll 3 (0 %) nfa nfa
r? St & Lede %, ji2000.j2k.entropy.encod... W 3 (0 %) nfa nia
1. com.installdj.compiler.q... 12 (0 %) nfa n/a
& javaio.BufferedinoutStre.., I 2 (0 %) n/a n/a
o Probes
v @

Due to the fact, that threads are sampled sporadically, it is not possible to estimate actual
execution times like in a full profiling session. Rather than times, the event counts are shown
in the call tree and the hot spots views. This is similar to async sampling [p. 65] which has the
same drawback. The other JFR thread states are "Waiting", "Blocking" and "Socket and file /0"
and still measure times. Because of this discrepancy, the "All thread states" mode is not available
in the thread status selector.

Another consideration is that the non-runnable thread states are calculated from events which
have configurable minimum duration thresholds that are shown in the tool tip next to the thread
status selector. The actual total time of these thread states may be significantly larger. The table
with the event types used for assembling the thread states is shown below:

Thread state Event types
Runnable jdk.ExecutionSample
Waiting jdk.JavaMonitorWait, jdk.ThreadSleep, jdk.ThreadPark
Blocking jdk.JavaMonitorEnter

Socket and file I/0 jdk.SocketRead, jdk.SocketWrite, jdk.FileRead, jdk.FileWrite

The functionality of the views is explained in the help topic on the CPU views [p. 52]. Note that
many features of full profiling sessions are not available in a JFR context.

Thread and monitor views

From the chronological method sampling data, the thread history view can be calculated, including
the tool tips that show stack traces for waiting and blocking times.

231

Event Browser

. Telemetries
-I:II Memery

I CPU Views

Threads

Thread History

Thread Dumps

N

° Probes

Menitors & Locks

Both alive and dead - Sort by start time | |G hd
T I B I B B B B B B A ROV

Threads 0:10 0:20 0:30

Common-Cleaner[InnocucusThrea,,, [i i ;

Java2D Disposer [system] — " . . .

i - ‘Waiting for menitor since 0:07.420.620 in: (2
AWT-Windows [systern] [
TG e 1| Javalang.Objectwait{long)

JMX server connection timeout 43 [...
JFR Periodic Tasks [RMI Runtime]
IFR Recording Scheduler [RMI Runt...
jprofiler_AgentCommunication|ma...
console_update [main]

Timer-0 [main]

Timer-1 [main]

Timer-3 [main]

Timer-4 [main]

Timer-2 [main]
pool-4-thread-1[main]
console_update [main]

el 1 bheand 1 leaninl

== Runnable = Waiting ™= Blocked ™ Socket and file /0

Java.lang.ref.ReferenceQueue.remove(long)

1l

java.lang.ref.ReferenceQueue.remove()

sun.javald.Disposer.run()
javalang.Thread.run()

Show in monitor history

I

Thread dumps are a feature in both JFR and JProfiler and are shown in the same view. In this
case, the event browser is not a substitute because it has no way of showing the structured
content of the thread dump column of the j dk. Thr eadDunp event. In the thread dumps view
you can also compare different thread dumps [p. 971.

Event Browser

. Telemetries
'I:I' Memery

I CPU Views

Threads

Thread History

Thread Dumps

i Menitors & Locks

° Probes

Thread dumps: X =2 o

at 0:50.000.809
at 0:40.002.644
at 0:29.993.824
at 0:19.989.565
at 0:09.986.126

= Timer-4

= TimerQueue

= WebSocketWorker-37

i WebsocketSelector3®

M console_update

HEm console_update

= jprofiler_AgentCemmunication
HEm jprofiler_ius

== pool-1-thread-1

jdk.intemnal.misc.Unsafe.park()

java.util.concurrent.locks.LockSuppert.park() {line: 194)
java.util.concurrent.locks. AbstractQueuedSynchronizerSCondition
java.awt.EventQueue.getMNextEvent() (line: 572)
java.awt.EventDispatchThread.pumpOneEventForFilters() (line: 190
java.awt.EventDispatchThread.pumpEventsForFilter() (line: 124)
Jjava.awt.EventDispatchThread.pumpEventsForHierarchy() (line: 11
Jjava.awt.EventDispatchThread.pumpEvents() (line: 109)
Jjava.awt.EventDispatchThread.pumpEvents() (line: 101)
Jjava.awt.EventDispatchThread.run() (line: 80)

From the j dk. JavaMbni t or Wai t, j dk. Thr eadSl eep and j dk. Thr eadPar k events, JProfiler
calculates a monitor history similar to the one of a full profiling session [p. 97], only without the
information on blocking threads. If you require that information for solving your problem, please
switch to a full profiling session. This also means that the locking graphs from the full profiling
session are not available for JFR snapshots. The monitor usage statistics that shows aggregate
information on waiting events is present and shows waiting times only.

232

) -
Event Browser All types ¥ Threshold in ms: 0 - v

’ Telemetries

Time Duration Type Menitor Address Monitor Class Waiting Thread

0:00.003[..| 95996 us|== Wait...[0x21a7b273888 RMI TCP Connectio... |

0:00.004 ... 15,444 ps =3 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
0:00.099 ... 3,399 ms =21 Wait... 0x21a7b273888 com.sun.jmx.rem... RMITCP Connectio...

0:00.109 ... 15,435 ps 3 Wait... 0x21a7b26eB88 javalang.Object IFR Periodic Tasks [...
l':'l gy 0:00.125 ... 15,310 usE=1 Wait... 0x21a7b26882 javalang.Object JFR Periodic Tasks ...

0:00.141 [... 15,444 ys 3 Wait... 0x21a7b26e888 Jjavalang.Object JFR Periodic Tasks [...
I CPU Views 0:00.156 [... 15,469 us 3 Wait... (x21a7b26e888 Jjavalang.Object JFR Periodic Tasks [...

000,172 [... 15,493 ys =3 Wait... 0x21a7b26e888 Jjavalang.Object JFR Periodic Tasks [...

0:00.187 [... 15,503 us =3 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
= Threads 0:00.203 [... 15,479 ps =2 Wait.., 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
. 0:00.219 ... 15,422 ps = Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...

0:00.234 ... 15,460 ps =1 Wait... 0x21a7b26e888 javalang.Object JFR Periodic Tasks [...
n Monitors & Lacks 00 2501 15427 e Wait M ?1aTh2R=A07 iava lann Ohisct IFR Perindir Tasks [

1 Total fro... 692 s

T Recording thresholds: 10,000 ps blocking / 10,000 ps waiting

Filtered stack trace for waiting thread:
Monitor Usage Statistics

o Probes

java.lang.Object wait{long)

com.sun.jmzx.remote.internal. ArrayMotificationBuffer.fetchNotifications(com.sun jmzx.remote.internal. N
com.sun.jmx.remoteinternal. ArrayMotificationBufferSShareBuffer. fetchMNotifications(com.sun.jmix.remc
com.sun.jmx.remoteinternal. ServerMotifForwarder. fetchMotifs(long, long, int)
iavax.mananement.remote.rmi.RMIConnectionlmnl$4.nni

Probes

Some of the JVM probes in a full profiling session have equivalent data sources in JFR snapshots.
Their main advantage compared to the event browser is that they combine multiple related
event types. The table below shows the available probes with the event types that are used as
their data sources.

Probe Event types Enabled in profile

Sockets jdk.SocketRead, jdk.SocketWrite all

Files jdk.FileRead, jdk.FileWrite all

Classes jdk.ClassLoad, jdk.ClassUnload, jdk.ClassDefine none

Exceptions jdk.JavaErrorThrow, jdk.JavaExceptionThrow errors in both,
exceptions in
none

Garbage jdk.GarbageCollection, jdk.GCPhasePause, all

Collector jdk.YoungGarbageCollection, jdk.OldGarbageCollection,

jdk.GCReferenceStatistics, jdk.GCPhasePauselevel<n>,
jdk.GCHeapSummary, jdk.MetaspaceSummary,
jdk.GCHeapConfiguration, jdk.GCConfiguration,
jdk.YoungGenerationConfiguration,
jdk.GCSurvivorConfiguration, jdk.GCTLABConfiguration

Class loading has a separate check box in the high-level JFR Ul that switches on all three class
loading events.

Each probe shows a number of views. In contrast to the event browser, the focus is on the
aggregated data and not on the single events. This is also how probes in JProfiler differ
conceptually from JFR data collection.

Except for the Garbage collector probe, all probes have the following views: The call tree and
hot spot views allow you to choose a single thread or a thread group as well as an aggregation
level. By default, all threads are shown and the aggregation level is set to "Methods".

233

” Telemetries & Call Tree 1, Hot Spots P8 Telemetries Events Exceptions

Created exceptions

Thread selection: Aggregation level:
’l Memery
’ . All thread groups v @ Methods
I CPU Views Hot Spot Events
i, java.lang.Exception I 49 (52 %)
— % javalang.MoSuchMethodException I 122 (30 %)
Threads %, java.lang.NoSuchMethodError l22(43%)
—— 1. java.net.MalformedURLException 1132 %)
n . java.awt.lllegalComponentStateException 2(0%)
1. java.io.FileNotFoundException 2(0 %)
Monitors & Lock: java.io iy
1 anitars ocks %, javalang.ClassMotFoundException 1(0%)
o Probes
Sockets
Files
Classes
Exceptions
Garbage Collector i hd

The telemetries view displays one or more telemetries from the recorded data with an overview
page that shows all of them at once. The full telemetry can be opened by clicking on the telemetry

name. By dragging along the time axis, you can select the corresponding events in the events
view.

Event Browser o Call Tree i, HotSpots [Telemetries Events Sockets @

/0 operations for sockets

” Telemetries Available probe telemetries: | Overview -
". v
By Memery A
0:10 0:20 0:30 0:40 0:50 1:00
I CPU Views £
— Recorded Count
Threads & A
o \
{P Monitors & Locks Zytes
Recorded Write Throughput
° Probes
D bytes
11 AR
Files
Row heightt ——@ o
Classes 9 /Q ,{3 ,D

The events view is similar to the one in the JFR browser. However, it shows multiple event types
corresponding to the underlying JFR events and offers a type selector. Filtering and stack trace
display for single and multiple selection are handled just as in the event browser. Also, there are

histogram views for time and memory measurements where you can select ranges by dragging
along the horizontal axis.

234

Telemetries i Call Tree I\, Hot Spots P8 Telemetries Events Exceptlfms
Created exceptions
Memory All types v Filter in all text columns = | O~ v
Start Time Event Type Description Message Thread
CPU Views 0:04.996 [Jul 19,...|~— Exception [java.lang.NoSuchMethodE..|com.ejt.framew.. | AWT-EventQue...

©@ D iuimdP @

0:04.996 [Jul 19... B Exception java.lang.MoSuchMethodE... com.ejt.framew... AWT-EventQue...
0:05.000 [Jul 1%,... =@ Exception Jjava.lang.MoSuchMethodE... com,jprofilerfr.. AWT-EventQue...
Threads 0:05.083 [Jul 19,... = Exception Jjavalang.Exception AWT-EventQue...
0:05.084 [Jul 19,... == Exception javalang.Exception AWT-EventQue...
0:05.084 [Jul 19,... == Exception javalang.Exception AWT-EventQue...
Monitors & Locks 0:05.084 [Jul 1 B Exception javalang.Exception AWT-EventQue...
0:05.085 [Jul 19,... == Exception java.lang.Exception AWT-EventQue...
0:05.085 [Jul 19,... == Exception java.lang.Exception AWT-EventQue...
Probes 0:05.085 [Jul 15,... B Exception java.lang.Exception AWT-EventQue...
0:05.085 [Jul 19,... B Exception java.lang.Fxception AWT-EventQue...
Sockets 0:05,168 [Jul 12, =8 Excention iavalana.MoSuchMethodE,., com.eit.framew.., AWT-EventCQue, .,
Stack trace:
= java.lang. Throwable.< init> (java.lang.String)
Classes java.lang.Exception.<init> (javalang String)

java.lang.ReflectiveOperationException.= init> (java.lang.String)
Exceptions java.lang.NoSuchMethodException. <init> {java.lang.5tring)

java.lang.Class.getDeclaredMethod(java.lang.String, java.lang.Class[])
Garbage Collector

The garbage collector view is special, because full profiling sessions can show the exact same
information in profiling sessions with Java 17 or higher. When the garbage collector probe in the
JVM probe category is recorded, JFR streaming is used to obtain the necessary data. See the
chapter on garbage collector analysis [p. 118] for more information.

235

F Configuration In Detail

F.1 Trouble Shooting Connection Problems

When a profiling session cannot be established, the first thing to do is to have a look at the
terminal output of the profiled application or application server. For application servers, the
stderr stream is often written to a log file. This may be a separate log file and not the main log
file of the application server. For example, the Websphere application server writes a
nati ve_stderr. | og file where only the stderr output is included. Depending on the content
of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains" Wi ti ng for connection ...",theconfiguration of the profiled application
is ok. The problem might then be related to the following questions:

+ Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your local
machine? Unless the profiling agent is configured to start up immediately with the "nowait"
option, it will wait until the JProfiler GUI connects before letting the VM continue to start up.

* Is the host name or the IP address configured correctly in the session settings?

« Did you configure a wrong communication port? The communication port has nothing to do
with HTTP or other standard port numbers and must not be the same as any port that is
already in use. For the profiled application, the communication port is defined as an option
for the profiling VM parameter. With the VM parameter - agent pat h: <path to jprofilerti
I'i brary>=port=25000, a port of 25000 would be used.

« Do you try to connect to an agent with a direct connection that only listens on the loopback
interface? By default, the agent only listens on the loopback interface. You can configure
JProfiler to set up an SSH tunnel to the remote machine. If you don't require encryption, you
can also use the addr ess=[| P addr ess] option for the - agent pat h parameter.

+ Isthere a firewall between the local machine and the remote machine? There may be firewalls
for incoming as well as for outgoing connections or even firewalls on gateway machines in
the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is already in
use. In that case, check the following questions:

+ Didyou start the profiled application multiple times? Each profiled application needs a separate
communication port.

+ Are there any zombie java processes of previous profiling runs that are blocking the port?
+ Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JProfil er> and your application or
application server starts up normally, the - agent path: [path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call in your
startup script is actually executed and add the VM parameters there.

Attach problems

When attaching to a running JVM, you sometimes may not see the JVM of interest in the list of
all JVMs. To find the cause of this problem, it is important to understand how the attach
mechanism works. When a JVM is started, it writes a PID file into the the hsper f dat a_ $USER

236

directory in the temporary directory by which is it discovered. Only the same user or an admin
user can then attach to the JVM. JProfiler can help you to connect to a JVM as an admin user.

On Windows, use the Show Services button to show all JVM service processes. JProfiler installs a
helper service that will run with the system account that can connect to services running with
system accounts as well as with a configured user account. The name of that service is "JProfiler
helper" and is installed when you click on that button. You have to confirm the UAC prompt to
allow the installation of the service. When JProfiler exits, the service is uninstalled again.

On Linux, you can use the user switcher in the attach dialog to attach with the root account. This
user switcher is shown when profiling a local JVM as well as when attaching to a remote Linux
or macOS machine. For the remote attach case, you can also switch to a different non-root user.
If you have the root password, always switch to root rather than to the actual user that runs the
service.

If aJVM is not visible on Linux even though you think it should be, the problem is usually connected
with the temporary directory. One possibility is that the access rights for the /tnp/
hsper f dat a_$USER directory are wrong. In that case, delete the directory and restart the JVM.
The process to be attached to must have write access to /tmp, otherwise attaching is not support.

If you use systemd, the process you are interested in may have Pri vat eTnp=yes set in its
systemd service file. Then the pid file is written into a different location. JProfiler will handle this
if you change to the root user with the user switcher in the attach dialog or if you use the CLI
tools as root.

237

F.2 Scripts In JProfiler

JProfiler's built-in script editor allows you to enter custom logic in various places in the JProfiler
GUI, including custom probe configuration, split methods, heap walker filters and many more.

@ settings Edit Search Code Help Edit X
EZ P9 s % O
¥ B & # &
_ Show § - Modify Test
Copy Cut Pate ey Find Repisce | o o oth Compik Help

Please enter an expression (ne trailing semicolon) or a script (ends with a return statement)
that consists of regular Java code. The following parameters are available:

E”thl'

- com.jprofiler.api.agent.ScriptContext scriptContext
- javax servlet.http. HitpServietRequest servietRequest

The expected return type is java.lang.String
Script:

lI This assumes that a query parameter named "action" is used
2 5tring action = servletRequest.getParamster ("action™);

3 5tring uri = servletRequest.getRequestlURI();

41if (action '= null) [

3 return uri + "?action=" + action;

£ _mlea I

The box above the edit area shows the available parameters of the script as well as its return
type. By invoking Help->Show Javadoc Overview from the menu you can get more information on
classes from the com j profil er. api . * packages.

A number of packages can be used without using fully-qualified class names. Those packages
are:

+ java.util.
+ java.io.*

You can put a number of import statements as the first lines in the text area in order to avoid
using fully qualified class names.

All scripts are passed an instance of com j profi | er. api . agent. Scri pt Cont ext that allows
you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the general
settings. By default, the JRE that JProfiler runs with is used. In that case, code completion does
not offer parameter names and Javadoc for classes in the JRE.

238

@ General Settings *
Ul Session Defaults Snapshots IDE Integrations Updates External Programs
Default Session O
Edit Default Session Settings
If you have modified the default session settings, you may wish to restore the initial settings.
Reset Default Session Settings
JREs For Launching Profiling Sessions (7]
Default JRE: | 17 [C:\Users\ingo'jdks'jbrsdk-17-b135.1] v Configure JREs

DK For Code Editor (7]
C) Currently Used JRE (7]

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates to the
required return type. For example,

obj ect.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of the
required return type as the last statement:

i mport java.l ang. managenent . Managenent Fact ory;
return Managenent Fact ory. get Runti meMXBean() . get Upti ne();

The above example would work for a script telemetry. JProfiler automatically detects whether
you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the script

history. If you click on the & Show History tool bar button, all previously used scripts are shown.
Scripts are organized by script signature, and the current script signature is selected by default.

Code completion

Pressing CTRL- Space brings up a popup with code completion proposals. Also, typing a dot (".")
shows this popup after a delay if no other character is typed. The delay is configurable in the
editor settings. While the popup is being displayed, you can continue to type or delete characters
with Backspace and the popup will be updated accordingly. "Camel-hump" completion is
supported. For example, typing NPE and hitting CTRL- Space will propose java. | ang.
Nul | Poi nt er Excepti on among other classes. If you accept a class that is not automatically
imported, the fully qualified name will be inserted.

239

1 Thio Amepmes Rhab A mOEE A ey named Msotion® is used

2 S5tring action = sewletRequest‘getkarameter("acmcn").'

3 5tring uri = servletRequest.getReq @ getServletPath() String
tllr (action !=.nu11: { . . equestediessionId() String
= return uri + "?action=" + acti

6] else [equestURI () String
7 return uri; emotelser() String
8} getQueryString () String

athTranslated() String
athInfo() String
ethod () String

eader (3tring argl) String
getContextPath() String

The completion popup can suggest:

* @ variables and script parameters. Script parameters are displayed in bold font.
* packages, when typing an import statement

* O classes

* © fields, when the context is a class

* W methods, when the context is a class or the parameter list of a method

Parameters with classes that are neither contained in the configured session class path nor in
the configured JDK are marked as [unr esol ved] and are changed to the genericj ava. | ang.
Obj ect type. To be able to call methods on such parameters and get code completion for them,
add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning conditions.
Errors are shown as red underlines in the editor and red stripes in the right gutter. Warnings
such as an unused variable declaration are shown as a yellow backgrounds in the editor and
yellow stripes in the gutter. Hovering the mouse over an error or warning in the editor as well
as hovering the mouse over a stripe in the gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors in
the code, yellow if there are warnings and red if errors have been found. You can configure the
threshold for problem analysis in the editor settings.

240

@ Java Editor Settings X

Code Completion Popup Settings
Auto-impert classes during code completion
[Auto-popup code completion after dot

Delay: 1,000 ¥ ms

Popup height: 10 | ¥ | entries

Display Code Problems

MNone Errors only O :) Errars and Warnings O

JDK For Code Editor

The runtime libraries of the configured JDK will be used for code completion and script compilation.You
can configure a default JDK in the general settings.

© Default JOK

Override default JOK with

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, you might want
to try the actual compilation. Choosing Code->Test Compile from the menu will compile the script
and display any errors in a separate dialog. Saving your script with the OK button will not test
the syntactic correctness of the script unless the script is used right away.

Key bindings

Pressing SHI FT- F1 opens the browser at the Javadoc page that describes the element at the
cursor position. Javadoc for the Java runtime library can only be displayed if a JDK with a valid
Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from the
window menu to display the key map editor. Key bindings are saved in the file $HOVE/ .
jprofileri14/editor_keymap. xm . Thisfile only exists if the default key map has been copied.
When migrating a JProfiler installation to a different computer, you can copy this file to preserve
your key bindings.

241

F.3 Custom Help

If you have an internal website that provides additional guidance for users, you can add an extra
help button to the toolbar and the "Help" menu. To do that, add the following properties to the
.vmoptions file:

-Dcustom hel p. url =https://wwv i nternal .website.com
- Dcust om hel p. t ool Bar Text =I nt er nal #hel p
- Dcust om hel p. act i onNanme=Show i nt ernal hel p

All three properties have to be defined to make the action visible in the Ul. The cust om hel p.
t ool Bar Text property is the text that is displayed in the toolbar. It should be concise and a
second line can be added with a # separator as in the example above.

The location of the .vmoptions file is under <JProfiler installation directory>/bin/
jprofiler.vnoptions on Windows and Linux and /Applications/JProfiler.app/
Cont ent s/ vnopti ons. t xt on macOS. In addition, there are user-writable locations under
%RJSERPRCFI LE% . j profiler14\jprofiler.vnopti ons onWindows, SHOVE/ . j profil er 14/
jprofiler.vnmoptionsonLinuxand$HOVE/ Li brary/ Preferences/jprofiler.vnoptions
on macOS.

242

F.4 Setting Profiling Settings At Startup

Before the profiling agent can start any recordings, the profiling settings have to be set. This
happens when you connect with the JProfiler Ul. Under some circumstances, it is required that
the profiling agent knows the profiling settings at startup. The main use cases are:

+ Offline profiling

Triggers or the APl are used to record data and save snapshots. The JProfiler GUI cannot
connect in this mode. See the help topic on offline profiling [p. 128] for more information.

+ Profiling with jpcontroller on a headless machine
The command line utility jpcontroller [p. 246] can be used instead of the JProfiler GUI to record

data and save snapshots interactively or with a non-interactive command file. However,
jpcontroller has no facility for configuring profiling settings, so they have to be set in advance.

* Remote attach to older Open)9 and IBM JVMs

Older OpenJ9 and IBM JVMs before 8u281, 11.0.11 and Java 17 do not have the ability to
redefine classes without endangering the stability of the profiled process, so profiling settings
have to be set at startup. The "Profiled JVM" step of the remote integration wizard in JProfiler
asks you about the type of the JVM, and if you select Older Open/9 and IBM JVMs there, the
wizard will add the options discussed below.

In general, setting profiling settings at startup is the most efficient mode of operation, because
the least number of class redefinitions have to be performed. If the reduced convenience is not
a problem, it can be used for any kind of profiling session.

Setting profiling settings at startup

If you use an integration wizard, select the On a remote computer option on the "Local or Remote"
step and then the Apply configuration at startup option on the "Config synchronization" step. The
wizard will then add the same options as discussed in the following paragraphs.

If you have added an - agent pat h VM parameter to your start script to load the profiling agent,
the profiling settings can be set by adding

,config=<path to config fil e> id=<session |D>
to the - agent pat h parameter. A complete parameter will look like this:
-agentpath:/path/to/libjprofilerti.so=port=8849, nowait, config=/path/to/config,id=123

If you use j penabl e to load the profiling agent after the process has been started, you can
choose offline mode in the interactive execution and specify config and ID there. Alternatively,
passthe--of fline, --configand--idarguments for non-interactive execution.

Preparing the config file

The referenced config file can be the config file of the JProfiler installation on the current machine,
in which case the config parameter does not have to be specified at all. The JProfiler config file
is located at $HOVE/ .jprofilerl4/jprofiler_config.xm or %JSERPROFI LE% .
jprofilerl4\jprofiler_config.xm and is the default for the confi g option of the
-agent | i b VM parameter.

Often, automated profiling should be performed on a different machine and referencing the
local JProfiler config file is not possible. You can then prepare a session with the profiling settings

243

in the JProfiler Ul on your local machine, export it via Session->Export Session Settings and transfer
it to the machine where JProfiler is running on.

The session ID can be seen in the top-right corner of the "Application settings" tab of the session
settings dialog (see the screenshot below). If the exported file only contains one session, thei d
parameter does not have to be specified.

Synchronizing the config file

After you have completed the initial setup, you may want to adjust profiling settings for future
profiling runs. This requires that the config file is copied to the remote machine each time you
make a modification.

Remote sessions in JProfiler have a "Config synchronization" feature that can automate this
process for you.

@) Session Settings X
£

i Application Settings Session name: Application server on demo Id: @ 7]

Session Type

Profiled VM < Attach ta an already running HotSpat/Openl9 IVM and profile it
Code Editor Attach Attach type: Select from all local IVMs o Attach to remote JVM Kubernetes
e Launch a new JVM and profile it
@ Call Tree Recordin <
EA o &
Launch &
' Call Tree Filters
Profiled JVM Settings
. . If you have not yet prepared a JVM for profiling, it is recommended to run an integration wizard. It will
Trigger Settings

create the remote session for you.

Databases 55H tunnel v Direct 55H to demo:8849 Edit (7]

Use SOCKS proxy

Execute stop command
JVM & Custom Probes

0 HTTR, RPC & JEE Execute start command

Open browser with URL

Connection timeout: 60 % seconds Config Synchronization Options |

{i_‘j} Advanced Settings

Java File Path

Mote: the classpath is used for the bytecode viewer only.

n Class path
Source path)

General Settings Copy Settings From “ Cancel

If the session is started via SSH, you can copy the config file via SSH directly to the remote machine.
Otherwise, you can still copy the config file to a local directory which may be mounted on the
remote machine. Finally, you can execute an arbitrary command, to copy the config file by other
means.

244

@ Config Synchrenization Options

The synchronization action configured below is performed each time the profiling
settings are changed.

Please choose the desired synchronization action:

Manual synchronization 0
0 Copy with 55H to remate directory: @ | /home/build/config

Copy config file to directory: (7]

Execute command: 0

245

G Command Line Reference

G.1 Command Line Executables For Profiling

JProfiler includes a number of command line tools for setting up the profiling agent and controlling
profiling actions from the command line.

Loading the profiling agent into a running JVM

With the command line utility bi n/ j penabl e, you can load the profiling agent into any running
JVM with a version of 6 or higher. With command line arguments, you can automate the process
so that it requires no user input. The supported arguments are:

Usage: jpenable [options]

j penabl e starts the profiling agent in a selected |ocal JVM so you can connect
toit froma different conputer. If the JProfiler GU is running |locally, you
can attach directly fromthe JProfiler GU instead of running this executable.

* if no argunent is given, jpenable attenpts to discover |local JVMs that
are not being profiled yet and asks for all the required input on the command
l'i ne.

* with the followi ng argunents, you can partially or conpletely supply the
entire user input on the conmand |ine:

-d --pid=<Pl D> The PID of the JVMthat should be profiled
-n --noi nput Do not ask for user input under any circunstances
-h --help Show t his hel p

- - opti ons=<OPT> Debuggi ng options passed to the agent

QU node: (default)

-g --qgui The JProfiler GU wll be used to attach to the JVM

-p --port=<nnnnn> The port on which the profiling agent should listen for
a connection fromthe JProfiler GU

-a --address=<IP> The address the profiling agent should listen on

O fline node:

-0 --offline The JVMwill be profiled in offline node
-c --config=<PATH> Path to the config file with the profiling settings
-i --id=<ID> ID of the session in the config file. Not required, if

the config file holds only a single session.

Note that the JVM has to be running as the sane user as jpenable, otherw se
JProfiler cannot connect to it.

An exception are W ndows services runni ng under the |ocal system account if you
list theminteractively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bi n/ j pdunp command line tool that saves
an HPROF snapshot [p. 202] without loading the profiling agent into the VM:

246

Usage: jpdunp [options]

j pdunp dunps the heap froma locally running JVMto a file.
Hot spot VMs produce HPROF files, OpenJ9 VMs PHD files.
HPROF and PHD files can then be opened in the JProfiler GU .

* if no argunent is given, jpdunp lists all locally running JVMs.
* with the followi ng argunents, you can partially or conpletely supply the
entire user input on the command |ine:

-p --pid=<Pl D> The PID of the JVM whose heap shoul d be dunped
Wth a specified PID, no further questions will be asked.
-a --all Save all objects. If not specified, only |live objects are
dunped
-f --file=<PATH> Path to the dunp file. If not specified, the dunp file
<VM nane>. hprof is witten in the current directory.
If the file already exists, a nunber is appended.
-h --help Show t hi s hel p

Note that the JVM has to be running as the same user as jpdunp, otherw se
JProfiler cannot connect to it.

An exception are Wndows services running under the |ocal system account if you
list theminteractively wth jpdunp.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap snapshot.
Also, because the profiling agent can never be unloaded, this method is suitable for JVMs running
in production.

Controlling the profiling agent

When you start the bi n/ j pcontr ol | er executable without arguments, it attempts to connect
to a profiled JVM on the local machine. If multiple profiled JVMs were discovered, you can select
one from a list. Because the discovery mechanism uses the attach API of the Oracle JVM, this
only works for Oracle JVMs starting with Java 6.

j pcontrol I er can only connect to JVMs where the profiling settings have been set, so it does
not work if the JVM was started with the "nowait" option for the - agent pat h VM parameter.
That option is set when choosing the Startup immediately, connect later with the JProfiler GUI radio
button on the "Startup mode" screen of an integration wizard and no JProfiler GUI has yet
connected to the agent. Using j penabl e without the - - of f1 i ne argument also requires a
connection from the JProfiler GUI before j pcontrol | er can connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot JVM
with a version of 6 or higher, you have to pass the VM parameter - Dj prof i | er. j mxSer ver Port =
[port] tothe profiled JVM. An MBean server will be published on that port, and you can specify
the chosen port as an argument to j pcontrol |l er. With the additional VM parameter
-Dj profiler.jnxPasswordFil e=[file] youcan specify a properties file with key-value pairs
of the form user =passwor d to set up authentication. Note that these VM parameters are
overridden by the com sun. nanagenent . j nxr enpt e. port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to connect
to a remote server by invoking j pcontrol | er host: port. If the remote computer is only
reachable via an IP address, you have to add - Oj ava. rni . server. host nane=[| P addr ess]
as a VM parameter to the remote VM.

By default, j pcontrol | er is an interactive command line utility, but you can also automate
profiling sessions with it without the need for manual input. An automated invocation would
pass[pid | host:port] toselectaprofiled)VM aswellasthe--non-interacti veargument.
In addition, a list of commands is read, either from stdin, or from a command file that is specified

247

with the - - conmand- f i | e argument. Each command starts on a new line, lines that are blank
or start with a "#" comment character are ignored.

Commands for this non-interactive mode are the same as the method names in the JProfiler

MBean ", They require the same number of parameters, separated by spaces. String must be
surrounded by double quotes if they contain spaces. In addition, asl eep <seconds>command
is provided that pauses for a number of seconds. This allows you to start recording, wait for
some time and then save a snapshot to disk.

Note that the profiling settings have to be set in the profiling agent. This happens when you
connect with the JProfiler Ul. If you never connect with the JProfiler Ul, they have to set them
manually in the startup command or with jpenable, please see the help topic on setting profiling
settings at startup [p. 243] for more information.

The supported arguments of jpcontroller are shown below:

Usage: jpcontroller [options] [host:port | pid]

* if no argunment is given, jpcontroller attenpts to discover |ocal JVMs that
are being profiled

* if a single nunmber is specified, jpcontroller attenpts to connect to the JVM
with process ID [pid]. If that JVMis not profiled, jpcontroller cannot
connect. In that case, use the jpenable utility first.

* otherw se, jpcontroller connects to "host:port", where port is the value
that has been specified in the VM paraneter -Djprofiler.jnxServerPort=[port]
for the profiled JVM

The follow ng options are avail abl e:
-n --non-interactive Run an autonat ed session where a |list of conmands
is read fromstdin.
-f --command-fil e=<PATH> Read commands froma file instead of stdin. Only
applicable together with --non-interactive.

Syntax for non-interactive conmands:
See the javadoc for RenpteControllerMBean (https://bit.ly/2D nDN5) for a
list of operations. Paraneters are separated by spaces and nust be quoted if
they contain spaces. For exanpl e:

addBookmark "Hello world"

start CPURecordi ng true

start ProbeRecording builtin.JdbcProbe true true
sl eep 10

st opCPURecor di ng

st opProbeRecordi ng builtin.JdbcProbe
saveSnapshot /path/to/ snapshot.jps

The sl eep <seconds> command pauses for the specified nunber of seconds.
Enpty lines and lines starting with # are ignored.

M https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/
RemoteControllerMBean.html

248

https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html
https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html

G.2 Command Line Executables For Working With Snapshots

When using offline profiling [p. 128] to save snapshots programmatically, it may also be necessary
to programmatically extract data or reports from those snapshots. JProfiler offers two separate
command line executables, one for exporting views from a snapshot and one for comparing
snapshots.

Exporting views from a snapshot

The executable bi n/ j pexport exports view data to various formats. If you execute it with the
- hel p option, you will get information on the available view names and view options. For reasons
of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [gl obal options]
"view nane" [options] "output file"
"view name" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.ips, .hprof, .hpz, .phd, .jfr
"view name" is one of the view nanes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

G obal options:

- obf uscat or =none| pr oguar d| yguard
Deobfuscate for the selected obfuscator. Defaults to "none", for other
val ues the mappingFile option has to be specified.

-mappi ngfil e=<fil e>
The mapping file for the sel ected obfuscator.

- out put di r =<out put di rectory>
Base directory to be used when the output file for a viewis a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a view cannot be set and
continue with the next view The default value is "false", i.e., the
export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character>
The field separator character for the CSV exports. Defaults to ',

- bi t map=f al se| true
Wiere appropriate, export a bitmap i mage instead of SVG for the main
content. The default value is false.

Avai | abl e vi ew nanes and opti ons:
* Tel emetryHeap, Tel enetryObjects, Tel enetryThroughput, Tel emetryGC,
Tel enetryd asses, Tel enetryThreads, Tel emetryCPU
Opt i ons:
-format=htm | csv
Det erm nes the output format of the exported file. If not present, the
export format will be determi ned fromthe extension of the output
file.
-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.
- m nhei ght =<nunber of pixel s>
M ni mum hei ght of the graph in pixels. The default value is 600.

* Bookmar ks, ThreadMonitor, CurrentMnitorUsage, MonitorUsageH story
Opt i ons:
-format=htm | csv

* Al Objects
Opti ons:

-format=htnm | csv

249

-viewfilters=<comma-separated |ist>
Sets view filters for the export. If you set viewfilters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfilternmde=startsw th|endsw th|contains|equals
Sets the view filter node. The default value is "contains".
-viewfilteropti ons=casesensitive
Bool ean options for the view filter. By default, no options are set.
- aggr egat i on=cl ass| package| conmponent
Sel ects the aggregation |level for the export. The default value is
cl asses.
- expandpackages=true| f al se
Expand package nodes in the package aggregation |evel to show
contai ned cl asses. The default value is "false". Has no effect for
ot her aggregation levels and with csv output fornmat.

* Recorded(bj ects
like Al Objects, but with additional options:
-liveness=live| gc|all
Sel ects the liveness node for the export, i.e., whether to display
l'ive objects, garbage collected objects or both. The default value is
l'ive objects.

* AllocationTree
Opti ons:

-format =ht m | xm

-viewfilters=<conma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equal s

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-class=<fully qualified class nanme>
Specifies the class for which the allocation data shoul d be
calculated. If enpty, allocations of all classes will be shown. Cannot
be used together with the package opti on.

- package=<ful ly qualified package nanme>
Specifies the package for which the allocation data shoul d be
calculated. If enpty, allocations of all packages will be shown.
Cannot be used together with the class option.

-liveness=live|gc|all

* Al | ocati onHot Spot s
Opt i ons:

-format =htm | csv| xm

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equals

-viewfilteroptions=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent

-class=<fully qualified class nanme>

- package=<ful ly qualified package name>

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofil ed cl asses
separately.

-val uesummat i on=sel f | t ot al
Det ermi nes how the tinmes for hot spots are cal cul ated. Defaults to
"sel f".

- expandbackt races=true| f al se
Expand backtraces in HTM. or XM. format. The default value is "fal se".

* C assTracker
l'i ke Tel enetryHeap, but w th additional options:

250

-cl ass
The tracked class. If mssing, the first tracked class is exported.

* Call Tree
Opti ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
Selects the thread group for the export. If you specify "thread" as
well, the thread will only be searched in this thread group, otherw se
the entire thread group will be shown.
-t hread=<nanme of thread>
Sel ects the thread for the export. By default, the call tree is nerged
for all threads.
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is
"runni ng".

* Hot Spot s
Opt i ons:
-format =ht m | csv| xml
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hr ead=<name of thread>
-t hreadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
- expandbackt races=true| f al se
-unprofil edcl asses=separ at el y| addt ocal | i ng
-val uesunmat i on=sel f | t ot al

* QutlierDetection
Opt i ons:
-format=htm | csv
-threadstatus=al | | runni ng| wai ti ng| bl ocki ng| neti o
-viewfilters=<comma-separated |ist>
-viewfiltermde=startsw th|endsw th|contains|equals
-viewfilteroptions=casesensitive

* Conpl exity
Opti ons:

-format=htm | csv| properties

-fit=best|constant|linear|quadratic| cubic|exponential]|logarithmc|n_log_n
The fit that should be exported. The default value is "best". No curve
fitting data is exported to CSV.

- met hod=<net hod nanme>
The nethod nane for which the conplexity graph should be exported. If
not given, the first method will be exported. Otherw se, the first
net hod nane that starts with the given text will be exported.

-wi dt h=<nunber of pixel s>

- hei ght =<nunber of pixel s>

* ThreadH story
I'i ke Tel emetryHeap, but with changed options:
-format =ht m

* MonitorUsageStatistics
Opti ons:

-format=htm | csv
-type=noni tors| t hr eads| cl asses

251

Sel ects the entity for which the nonitor statistics should be
cal cul ated. The default value is "nonitors".

* ProbeTi meLi ne
i ke ThreadHi story, but with additional options:
- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

* ProbeControl Qoj ects
Opt i ons:
- pr obei d=<i d>
-format=htm | csv

* ProbeCal | Tree
Opt i ons:
- pr obei d=<i d>
-format=htm | xm
-viewfilters=<comma-separated |ist>
-viewfilternmde=startsw th|endsw th|contains|equal s|w | dcard|regex
-viewfilteropti ons=excl ude, casesensitive
- aggr egat i on=ret hod| cl ass| package| conponent
-t hr eadgr oup=<nane of thread group>
-t hread=<nane of thread>
-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is "all"

* ProbeHot Spot s
l'i ke ProbeCall Tree, but with additional or changed options:
-format =htm | csv| xm
- expandbackt races=true| f al se

* ProbeTel enetry
i ke Tel emetryHeap, but with additional options:
- pr obei d=<i d>
-tel emetrygroup
Sets the one-based i ndex of the telenmetry group that should be
exported. This refers to the entries that you see in the drop-down
Iist above the probe telenetry view The default value is "1".

* ProbeEvents
Opt i ons:
- pr obei d=<i d>
-format =htm | csv| xm

* ProbeTracker
l'i ke Tel enetryHeap, but with additional options:
- pr obei d=<i d>
- i ndex=<nunber >
Sets the zero-based i ndex of the drop-down |ist that contains the
tracked el ements. The default value is O.

Some examples for using the export executable are:

j pexport test.jps Tel emetryHeap heap. htnl
j pexport test.jps Recordedhj ects -aggregati on=package - expandpackages=true objects. htnl
j pexport test.jps -ignoreerrors=true -outputdir=/tnp/export

Recor dedCbj ect s obj ects. csv
Al l ocati onTree -cl ass=java.lang. String all ocations.xm

252

Comparing snapshots

The executable bi n/ j pconpar e compares different snapshots [p. 133] and exports them to
HTML or a machine-readable format. Its - hel p output is reproduced below, again without any
duplicate explanations.

Usage: jpconpare "snapshot file"[,"snapshot file",...] [gl obal options]
"conpari son nane" [options] "output file"
"conpari son name" [options] "output file"

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr
"conparison nane" is one of the conparison nanmes |isted bel ow
[options] is a list of options in the format -option=val ue
"output file" is the output file for the export

d obal options

- out put di r =<out put directory>
Base directory to be used when the output file for a conparison is a
relative file.

-ignoreerrors=true|fal se
Ignore errors that occur when options for a conparison cannot be set
and continue with the next conparison. The default value is "fal se"
i.e., the export is term nated, when the first error occurs.

- csvsepar at or =<separ at or character>
The field separator character for the CSV exports. Defaults to ',

- bi t map=f al se| true
Wiere appropriate, export a bitmap i mage instead of SVG for the main
content. The default value is fal se

-sortbyti me=fal se|true
Sort the specified snapshot files by nodification tinme. The defaul t
val ue is fal se

-listfile=<fil ename>
Read a file that contains the paths of the snapshot files, one
snapshot file per line

Avai | abl e conpari son nanes and opti ons:
* (Obj ects
Opti ons:
-format =htm | csv
Determ nes the output format of the exported file. If not present, the
export format will be determined fromthe extension of the output
file
-viewfilters=<conma-separated |ist>
Sets view filters for the export. If you set view filters, only the
speci fi ed packages and their sub-packages will be displayed by the
exported view.
-viewfilternpde=startswi th|endsw th|contains|equal s
Sets the view filter nbde. The default value is "contains".
-viewfilteroptions=casesensitive
Bool ean options for the view filter. By default, no options are set.
- aggr egat i on=cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is

cl asses.
-liveness=live| gc|al
Sel ects the |iveness npbde for the export, i.e., whether to display

live objects, garbage collected objects or both. The default value is
l'ive objects.

-obj ect s=al | | recor ded| heapwal ker
Conpare all objects (JVMIl only) or recorded objects, or objects in
the heap wal ker. The default is all objects for .jps files and
heapwal ker for HPROF/ PHD files.

253

* Al |l ocati onHot Spot s

*

*

*

Opti ons:

-format=htnm | csv

-viewfilters=<conmma-separated |ist>

-viewfilternmde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

- aggr egat i on=net hod| cl ass| package| conponent
Sel ects the aggregation |level for the export. The default value is
nmet hods.

-liveness=live|gc|all

-unprofil edcl asses=separ at el y| addt ocal | i ng
Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separately.

-val uesunmat i on=sel f| t ot al
Det erm nes how the tines for hot spots are calcul ated. Defaults to
"sel f".

-cl asssel ection
Cal cul ate the conparison for a specific class or package. Specify a
package with a wildcard, like 'java.aw.*".

Al | ocati onTree

Opt i ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive
- aggr egat i on=net hod| cl ass| package| conponent
-liveness=live|gc|all
-cl asssel ecti on

Hot Spot s
Opt i ons:

-format=htm | csv

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equals

-viewfilteropti ons=casesensitive

-firstthreadsel ection
Cal cul ate the conparison for a specific thread or thread group.
Specify thread groups |like 'group.*" and threads in specific thread
groups like 'group.thread' . Escape dots in thread names wth
backsl| ashes.

- secondt hr eadsel ecti on
Cal cul ate the conparison for a specific thread or thread group. Only
available if 'firstthreadselection' is set. |f enpty, the sane val ue
as for 'firstthreadsel ection' will be used. Specify thread groups |ike
"group.*' and threads in specific thread groups |ike 'group.thread .
Escape dots in thread names with backsl ashes.

-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
Sel ects the thread status for the export. The default value is
"runni ng".

- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age
Sel ects the difference cal culation method for call tinmes. The default
value is total tinmes.

-unprofil edcl asses=separ at el y| addt ocal | i ng

-val uesummat i on=sel f | t ot al

Cal | Tree

Opt i ons:
-format =ht m | xm
-viewfilters=<conma-separated |ist>
-viewfilternpde=startswi th|endsw th|contains|equal s
-viewfilteropti ons=casesensitive

254

-firstthreadsel ection

- secondt hr eadsel ecti on

-t hreadst at us=al | | runni ng| wai ti ng| bl ocki ng| neti o
- aggr egat i on=net hod| cl ass| package| conponent

-di fferencecal cul ati on=tot al | aver age

* Tel emet ryHeap
Opti ons:

-format=htm | csv

-m nw dt h=<nunber of pixel s>
M ni mum wi dt h of the graph in pixels. The default value is 800.

- m nhei ght =<nunber of pi xel s>
M ni mrum hei ght of the graph in pixels. The default value is 600.

-val uet ype=current | maxi munf bookmar k
Type of the value that is calculated for each snapshot. Default is the
current val ue.

- booknar kname
If valuetype is set to 'bookmark', the name of the bookmark for which
t he val ue shoul d be cal cul at ed.

- measur enent s=maxi num fr ee, used
Measurenments that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'used'.

- menor yt ype=heap| nonheap
Type of the nmenory that should be anal yzed. Default is 'heap'.

- menor ypool
If a special nmenory pool should be analyzed, its nane can be specified
with this parameter. The default is enpty, i.e. no special nmenory
pool .

* Tel emetryChj ects
Opt i ons:

-format =htm | csv

-m nw dt h=<nunber of pixel s>

- m nhei ght =<nunber of pixel s>

-val uet ype=current | maxi nur booknmar k

- booknar kname

- measur enent s=t ot al , nonarrays, arrays
Measurenents that are shown in the conparison graph. Concatenate
mul tiple values with commas. The default value is 'total"'.

* Tel enetryd asses
l'i ke Tel enetryQOhj ects, but with changed options:
-nmeasurenents=total ,filtered,unfiltered

* Tel emetryThr eads
like Tel emetryCbjects, but with changed options:
- measur enent s=t ot al , runnabl e, bl ocked, neti o, wai ti ng

* ProbeHot Spot s
Opti ons:

-format =htm | csv

-viewfilters=<comma-separated |ist>

-viewfiltermde=startsw th|endsw th|contains|equal s|w | dcard|regex

-viewfilteropti ons=excl ude, casesensitive

-firstthreadsel ection

- secondt hr eadsel ecti on

-t hreadst atus=al | | runni ng| wai ti ng| bl ocki ng| neti o

- aggr egat i on=ret hod| cl ass| package| conponent

-di fferencecal cul ati on=total | aver age

- pr obei d=<i d>
The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
expl anati on of custom probe nanes.

255

* ProbeCal | Tree
|'i ke ProbeHot Spots, but w th changed options
-format =ht m | xm

* ProbeTel enetry
like Tel emetryCbjects, but with additional or changed options

- measur enent s
The one-based indices of the neasurements in the telenetry group that
are shown in the conparison graph. Concatenate nultiple values with
commas, like "1,2". The default value is to show all measurenents.

- pr obei d=<i d>

-tel emet rygroup
Sets the one-based index of the telenetry group that should be
exported. This refers to the entries that you see in the drop-down
Iist above the probe telenmetry view The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format is
deduced from the extension of the output file:

.html
The view or comparison is exported as an HTML file. A directory named j profi | er _i nages
will be created that contains images used in the HTML page.

.csv
The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes the
separator character from the regional settings. JProfiler uses a semicolon as the separator in
locales that use a comma as a decimal separator and a comma in locales that use a dot as a
decimal separator. If you need to override the CSV separator character you can do so by setting
the global csvsepar at or option.

xml
The data is exported as XML. The data format is self-descriptive.

If you would like to use different extensions, you can use the f or mat option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots have heap dumps in them, you can use the bi n/ j panal yze executable
to prepare the heap dump analysis in advance [p. 80]. Opening the snapshot in the JProfiler GUI
will then be very fast. The usage information of the tool is shown below:

Usage: jpanalyze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr
[options] is a list of options in the format -option=val ue

Opt i ons:
- obf uscat or =none| pr oguar d| yguard
Deobf uscate for the selected obfuscator. Defaults to "none", for other
val ues the mappi ngFile option has to be specified
- mappi ngfile=<fil e>

256

The mapping file for the sel ected obfuscator.

-renoveunr ef erenced=true| f al se
If unreferenced or weakly referenced objects shoul d be renpved.

-retai ned=true|fal se
Cal cul ate retained sizes (biggest objects). renpveunreferenced will be
set to true.

-retai nsoft=true|fal se
If unreferenced objects are renpved, specifies if soft references
shoul d be ret ai ned.

-ret ai nweak=true| f al se
If unreferenced objects are renpved, specifies if weak references
shoul d be ret ai ned.

- ret ai nphant o=t rue| f al se
I f unreferenced objects are renoved, specifies if phantom references
shoul d be ret ai ned.

-retainfinalizer=true|false
If unreferenced objects are renpved, specifies if finalizer references
shoul d be ret ai ned.

Ther emoveUnr ef er enced, ther et ai ned and allther et ai n* command line options correspond
to the options in the heap walker options dialog.

257

G.3 Gradle Tasks

JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a number
of command line executables for working with snapshots [p. 249] that have corresponding Gradle
tasks.

Using Gradle tasks

To make the JProfiler Gradle tasks available in a Gradle build file, you can use the pl ugi ns block

pl ugi ns {
id 'comjprofiler' version 'XY.Z
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin is
distributed in the file bi n/ gradl e. j ar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
instalIDir = file('/path/to/jprofiler/hone')
}

Profiling from Gradle

With tasks of type com j profiler.gradl e. JavaProfil e you can profile any Java process.
This class extends Gradle's built-in JavaExec, so you can use the same arguments for configuring
the process. For profiling tests, use tasks of type com j profil er. gradl e. Test Profil e that
extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where the
profiling agent waits on the default port 8849 for a connection from the JProfiler GUI. For offline
profiling, you have to add a couple of attributes that are shown in the table below.

Attribute Description Required
offline Whether the profiling run should be in offline mode. No, of f | i ne and
nowai t cannot
nowait Whether profiling should start immediately or whether both bet r ue.
the profiled JVM should wait for a connection from the
JProfiler GUI.
sessionld Defines the session ID from which profiling settings should Required if

be taken. Has no effect if neither nowai t nor offline are
set because in that case the profiling session is selected |+ of flineisset

in the GUI. * nowait is set
fora 1.5 VM
configFile Defines the config file from which the profiling settings No
should be read.
port Defines the port number on which the profiling agent No

should listen for a connection from the JProfiler GUI. This
must be the same as the port configured in the remote

258

Attribute Description Required

session configuration. If not set or zero, the default port
(8849) will be used. Has no effectif of f | i ne is set because
in that case there is no connection from the GUI.

debugOptions | If you want to pass any additional library parameters for No
tuning or debugging purposes, you can do that with this
attribute.

An example for profiling a Java class with a main method that is compiled by the containing
project is given below:

task run(type: comjprofiler.gradle.JavaProfile) {
mai nCl ass = ' com nmycor p. MyMai nd ass'
cl asspath sourceSets. main.runti med asspath
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

You can see a runnable example of this task in the api / sanpl es/ of f|1 i ne sample project.
Unlike the standard JavaExec task, the JavaPr of i | e task can also be started in the background
by calling createProcess() on it. See the api/sanpl es/ nhean sample project for a
demonstration of this feature.

If you need the VM parameter that is required for profiling, the com j profiler. gradl e.
Set Agent pat hProperty task will assign it to a property whose name is configured with the
propert yNanme attribute. Applying the JProfiler plugin automatically adds a task of this type
named set Agent Pat hPr operty to your project. For getting the VM parameter that would be
used in the previous example, you can simply add

set Agent Pat hProperty {
propertyNane = 'profilingVnParaneter'
offline = true
sessionld = 80
configFile = file('path/to/jprofiler_config.xm")

to your project and add a dependency to set Agent Pat hPr oper ty to some other task. Then
you can use the project property prof i | i ngVnPar anet er in the execution phase of that task.
When assigning the property to other task properties, surround its usage with adoFirst {..
. } code block in order to make sure that you are in the Gradle execution phase and not in the
configuration phase.

Exporting data from snapshots

Thecom jprofiler.gradl e. Export task can be used to export views from a saved snapshot
and replicates the arguments of the bi n/ j pexpor t command line tool [p. 249]. It supports the
following attributes:

259

Attribute Description Required
snapshotFile | The path to the snapshot file. This must be a file with a . j ps Yes
extension.
ignoreErrors | Ignore errors that occur when options for a view cannot be No
set and continue with the next view. The default value is
f al se, meaning that the export is terminated when the first
error occurs.
csvSeparator | The field separator character for the CSV exports. Defaults No
to ll,ll.
obfuscator Deobfuscate class and method names for the selected No
obfuscator. Defaults to "none", for other values the
mappi ngFi | e option has to be specified. One of none,
pr oguard or yguar d.
mappingFile | The mapping file for the selected obfuscator. May only be Only if
set if the obf uscat or attribute is specified. obf uscat or is
specified

On the export task, you call the vi ews method and pass a closure to it in which you call
viewnane, file[, options]) oneormultipletimes. Each calltovi ewproduces one output
file. The nane argument is the view name. For a list of available view names, please see the help
page on the j pexport command line executable [p. 249]. The argument fi | e is the output file,
either an absolute file or a file relative to the project. Finally, the optional opt i ons argument is
a map with the export options for the selected view.

An example for using the export task is:

task export(
snapshot
views {

type: comjprofiler.gradle.Export) {
File = file('snapshot.jps')

view'Call Tree', 'callTree.htnl")
vi ew' Hot Spots', 'hotSpots.htm ',

Comparing sn

[threadStatus: 'all', expandBacktraces: 'true'])

apshots

Like the bi n/ j pconpar e command line tool [p. 249], the com j profi |l er. gradl e. Conpare
task can compare two or more snapshots. It attributes are:

Attribute Description Required
snapshotFiles | The snapshot files that should be compared. You can pass any Yes
I t er abl e containing objects that gradle resolves to file collections.
sortByTime If set to t r ue all supplied snapshots files are sorted by their file No
modification time, otherwise they are compared in the order they
were specified in the snapshot Fi | es attribute.

260

Attribute Description Required

ignoreErrors | Ignore errors that occur when options for a comparison cannot No
be set and continue with the next comparison. The default value
is f al se, meaning the export is terminated when the first error
occurs.

Just like exported views are defined for the Export task, the Conpar e task has a conpari sons
method where nested callsto conpari son(nanme, file[, options]) definethecomparisons
that should be performed. The list of available comparison names is available on the help page
of the j pconpar e command line executable [p. 249].

An example for using the compare task is:

task conpare(type: comjprofiler.gradle. Conpare) {
snapshotFiles = files('snapshotl.jps', 'snapshot2.jps')
conparisons {
conparison('Call Tree', 'callTree.htm ")
conpari son(' Hot Spots', 'hot Spots.csv',
[val ueSummation: 'total', format: 'csv'])

or, if you want to create a telemetry comparison for multiple snapshots:

task conpare(type: comjprofiler.gradle.Conpare) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
sortByTi me = true
conpari sons {
conparison(' Tel enetryHeap', 'heap.htm', [val ueType: 'nmaxinmuni])
conpari son(' ProbeTel emetry', 'jdbc.html', [probeld: 'JdbcProbe'])

Analyzing heap snapshots

The gradle task com j profil er. gradl e. Anal yze has the same functionality as the bi n/
j panal yze command line tool [p. 249].

The task has asnapshot Fi | es attribute like the Conpar e task to specify the processed snapshots
and obfuscat or and mappi ngfil e attributes like the Export task for deobfuscation. The
attributes renmoveUnr ef er enced, retainSoft, ret ai n\Wak, r et ai nPhant om
retai nFinal i zer andr et ai ned correspond the arguments of the command line tool.

An example for using the Anal yze task is given below:

task anal yze(type: comjprofiler.gradle.Analyze) {

snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
retai nWweak = true

obfuscator = 'proguard'

mappi ngFile = file(' obfuscation.txt"')

261

G.4 Ant Tasks

The Ant'"” tasks provided by JProfiler are very similar to the Gradle tasks. This chapter highlights
the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bi n/ ant . j ar . In order to make a task available to Ant,
you must first insert a t askdef element that tells Ant where to find the task definition. All
examples below include that taskdef. It must occur only once per build file and can appear
anywhere on the level below the project element.

Itis not possible to copy the ant . j ar archive to thel i b folder of your Ant distribution, you have
to reference a full installation of JProfiler in the task definition.

Profiling from Ant

The com jprofiler.ant.Profil eTask is derived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
Prof i | eJava Gradle task [p. 258]. Ant attributes are case-insensitive and usually written in lower
case.

<t askdef name="profile"
cl assname="com jprofiler.ant.Profil eTask"
cl asspat h="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
<profile classnane="M/Mai nd ass" offline="true" sessioni d="80">
<cl asspat h>
<fileset dir="lib" includes="*.jar" />
</ cl asspat h>
</profile>
</target>

Exporting data from snapshots

Withthecom j profil er. ant. Export Task you can export view from snapshots, just like with
the Export Gradle task [p. 258]. Views are specified differently than in the Gradle task: they are
nested directly below the task element and options are specified with nested opt i on elements.

<t askdef name="export"
cl assnane="com j profiler.ant. Export Task"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<target nane="export">
<export snapshotfil e="snapshots/test.jps">
<vi ew nanme="Cal | Tree" file="calltree.htm"/>
<vi ew nane="Hot Spots" fil e="hotspots. htnl">
<opti on nane="expandbacktraces" val ue="true"/>
<option name="aggregati on" val ue="cl ass"/>
</ vi ew>
</ export >
</target>

Comparing snapshots

Thecom jprofil er.ant. Conpar eTask corresponds to the Conpar e Gradle task and performs
comparisons between two ore more snapshots. Like forthecom j profi | er. ant. Export Task,
comparisons are directly nested below the element and options are nested for each conpar i son
element. The snapshot files are specified with a nested file set.

M http://ant.apache.org

262

http://ant.apache.org

<t askdef nane="conpare"
cl assnane="com j profil er.ant. ConpareTask"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<t arget nane="conpare">
<conpare sortbytime="true">
<fil eset dir="snapshots">
<i ncl ude name="*.jps" />
</fileset>
<conpari son name="Tel enetryHeap" fil e="heap. htm"/>
<conpari son nane="Tel enetryThreads" file="threads. htm ">
<opti on nane="neasurenents" val ue="inactive, active"/>
<option name="val uetype" val ue="booknark"/>
<opti on nane="booknar knane" val ue="test"/>
</ conpari son>
</ conpar e>
</target>

Analyzing heap snapshots

Like the Anal yze Gradle task, the equivalent com j profil er. ant. Anal yzeTask for Ant
prepares the heap snapshot analysis in snapshots that have been saved with offline profiling
for faster access in the GUI. The snapshots that should be processed are specified with a nested
file set.

<t askdef nane="anal yze"
cl assnane="com j profiler.ant. Anal yzeTask"
cl asspat h="<path to JProfiler installation>bin/ant.jar"/>

<target name="anal yze">
<anal yze>
<fileset dir="snapshots" includes="*.jps" />
</ anal yze>
</target>

263

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Method call recording
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	GC analysis
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Async and remote request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Outlier detection
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	JDK Flight Recorder (JFR)
	JFR overview
	Recording JFR snapshots
	JFR event browser
	JFR views

	Configuration in detail
	Trouble shooting connection problems
	Scripts
	Custom help
	Profiling settings at startup

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

